Химический элемент олово. Свойства и применение олова

    См. также: Список химических элементов по атомным номерам и Алфавитный список химических элементов Содержание 1 Символы, используемые в данный момент … Википедия

    См. также: Список химических элементов по символам и Алфавитный список химических элементов Это список химических элементов, упорядоченный в порядке возрастания атомных номеров. В таблице приводятся название элемента, символ, группа и период в… … Википедия

    - (ИСО 4217) Коды для представления валют и фондов Codes for the representation of currencies and funds (англ.) Codes pour la représentation des monnaies et types de fonds (фр.) … Википедия

    Простейшая форма материи, которая может быть идентифицирована химическими методами. Это составные части простых и сложных веществ, представляющие собой совокупность атомов с одинаковым зарядом ядра. Заряд ядра атома определяется числом протонов в … Энциклопедия Кольера

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    У этого термина существуют и другие значения, см. Русские (значения). Русские … Википедия

    Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

Каждый химический элемент периодической системы и образованные им простые и сложные вещества уникальны. Они имеют неповторимые свойства, а многие вносят неоспоримо значимый вклад в жизнь человека и существование в целом. Не исключение и химический элемент олово.

Знакомство людей с эти металлом уходит в глубокую древность. Этот химический элемент сыграл решающую роль в развитии человеческой цивилизации, по сей день свойства олова находят широкое применение.

Олово в истории

Первые упоминания о данном металле, имеющем, как люди считали раньше, даже некоторые магические свойства, можно найти в библейских текстах. Решающее значение для улучшения жизни олово сыграло в период «бронзового» века. На то время самым прочным металлическим сплавом, которым обладал человек, была бронза, её можно получить, если в медь добавить химический элемент олово. На протяжении нескольких веков из этого материала изготовляли всё, начиная от орудий труда и заканчивая ювелирными изделиями.

После открытия свойств железа сплав олова не перестал использоваться, конечно, он применяется не в прежних масштабах, но бронза, а также многие другие его сплавы активно задействованы сегодня человеком в промышленности, технике и медицине, наравне с солями этого металла, например, таким как хлорид олова, который получают взаимодействием олова с хлором, данная жидкость кипит при 112 градусах Цельсия, хорошо растворяется в воде, образует кристаллогидраты и дымит на воздухе.

Положение элемента в таблице Менделеева

Химический элемент олово (латинское название stannum - «станнум», записывается символом Sn) Дмитрий Иванович Менделеев по праву расположил под номером пятьдесят, в пятом периоде. Имеет ряд изотопов, самый распространённый - изотоп 120. Этот металл также находится в главной подгруппе из шестой группы, вместе с углеродом, кремнием, германием и флеровием. Его расположение предсказывает амфотерность свойств, в равной степени олову присущи и кислотные, и основные характеристики, которые более детально будут описаны ниже.

В таблице Менделеева также указана атомная масса олова, которая равняется 118,69. Электронная конфигурация 5s 2 5p 2 , что в составе сложных веществ позволяет металлу проявлять степени окисления +2 и +4, отдавая два электрона только с р-подуровня или же четыре с s- и р-, полностью опустошая весь внешний уровень.

Электронная характеристика элемента

В соответствии атомному номеру околоядерное пространство атома олова содержит целых пятьдесят электронов, они располагаются на пяти уровнях, которые, в свою очередь, расщеплены на ряд подуровней. Первые два имеют только s- и р-подуровни, а начиная с третьего идёт троекратное расщепление на s-, p-, d-.

Рассмотрим внешний так как именно его строение и заполнение электронами определяют химическую активность атома. В невозбуждённом состоянии элемент проявляет валентность, равную двум, при возбуждении происходит переход одного электрона с s-подуровня на вакантное место р-подуровня (он максимально может содержать три неспаренных электрона). В этом случае олово проявляет валентность и степень окисления - 4, так как спаренных электронов нет, а значит в процессе химического взаимодействия на подуровнях их ничто не удерживает.

Простое вещество металл и его свойства

Олово представляет собой металл серебряного цвета, относится к группе легкоплавких. Металл мягкий, сравнительно легко поддаётся деформации. Ряд особенностей присущ такому металлу, как олово. Температура ниже 13,2 является границей перехода металлической модификации олова в порошкообразную, что сопровождается изменением цвета с серебристо-белого на серый и уменьшением плотности вещества. Плавится олово при 231,9 градуса, а кипит при 2270 градусах Цельсия. Кристаллическая тетрагональная структура белого олова объясняет характерное похрустывание металла при его изгибе и нагреве в месте перегиба трением кристаллов вещества друг об друга. Серое олово имеет кубическую сингонию.

Химические свойства олова имеют двойственную суть, оно вступает как в кислотные, так и основные реакции, проявляя амфотерность. Металл взаимодействует с щелочами, а также кислотами, такими как серная и азотная, проявляет активность при реакции с галогенами.

Сплавы олова

Почему чаще вместо чистых металлов применяют их сплавы с определённым процентным содержанием составных компонентов? Дело в том, что сплаву присущи свойства, которых нет у индивидуального металла, или же эти свойства проявляются гораздо сильнее (например, электропроводность, стойкость к коррозии, пассивирование или активирование физических и химических характеристик металлов в случае необходимости и т.д.). Олово (фото показывает образец чистого металла) входит в состав многих сплавов. Оно может использоваться в качестве добавки или основного вещества.

На сегодняшний день известно большое количество сплавов такого металла, как олово (цена на них колеблется в широких пределах), рассмотрим самые популярные и применяемые (о применении тех или иных сплавов речь пойдёт в соответствующем разделе). В общем, сплавы станнума имеют следующие характеристики: высокая пластичность, низкая небольшая твёрдость и прочность.

Некоторые примеры сплавов


Важнейшие природные соединения

Олово образует ряд природных соединений - руд. Металл образует 24 минеральных соединения, самое важное значение для промышленности имеет оксид олова - касситерит, а также станин - Cu 2 FeSnS 4 . Олово рассеяно в земной коре, а соединения, образованные им, имеют магнетическое происхождение. В промышленности также используются соли полиоловянных кислот и силикаты олова.

Олово и организм человека

Химический элемент олово является микроэлементом по своему количественному содержанию в теле человека. Основное его скопление находится в костной ткани, где нормальное содержание металла способствует своевременному её развитию и общему функционированию опорно-двигательной системы. Помимо костей, олово концентрируется в желудочно-кишечном тракте, лёгких, почках и сердце.

Важно отметить, что избыточное накопление данного металла может привести к общему отравлению организма, а более длительное воздействие - даже к неблагоприятным генным мутациям. В последнее время эта проблема довольно актуальна, так как экологическое состояние окружающей среды оставляет желать лучшего. Большая вероятность интоксикации оловом у жителей мегаполисов и районов, близлежащих около промышленных зон. Чаще всего отравление происходит путем накопления в легких солей олова, например, таких как хлорид олова и других. В то же время недостаток микроэлемента может спровоцировать замедление роста, потерю слуха и выпадение волос.

Применение

Металл имеется в продаже на многих металлургических заводах и компаниях. Выпускается в виде чушек, прутков, проволоки, цилиндров, анодов, изготовленных из чистого простого вещества, такого как олово. Цена колеблется от 900 до 3000 рублей за кг.

Олово в чистом виде применяется редко. В основном используются его сплавы и соединения - соли. Олово для пайки применяется в случае скрепления деталей, которые не подвергаются воздействию высоких температур и сильных механических нагрузок, выполненных из медных сплавов, стали, меди, но не рекомендуется для изготовленных из алюминия или его сплавов. Свойства и характеристики оловянных сплавов описаны в соответствующем разделе.

Припои используют для пайки микросхем, в этой ситуации также идеально подходят сплавы на основе такого металла, как олово. Фото изображает процесс применения оловянно-свинцового сплава. С помощью него можно выполнить достаточно тонкие работы.

Ввиду высокой стойкости олова к коррозии его применяют для изготовления луженого железа (белой жести) - жестяных банок для пищевых продуктов. В медицине, в частности в стоматологии, олово задействовано для выполнения пломбирования зубов. Оловом покрыты домовые трубопроводы, из его сплавов изготовлены подшипники. Неоценимо важен вклад данного вещества и в электротехнику.

Водные растворы таких солей олова, как фторбораты, сульфаты, а также хлориды, используют в качестве электролитов. Оксид олова - это глазурь для керамики. Путём введения в пластические и синтетические материалы различных производных олова представляется возможным уменьшить их возгораемость и выделение вредоносных дымов.

Бром.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 .

Валентные электроны выделены жирным шрифтом. Относится к семейству р-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 7, бром расположен в 4-м периоде, VIIA группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Германий.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 .

Валентные электроны выделены жирным шрифтом. Относится к семейству p-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 4, германий расположен в 4-м периоде, IVA группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Кобальт.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2 .

Валентные электроны выделены жирным шрифтом. Относится к семейству d-элементов. Кобальт расположен в 4-м периоде, VIIB группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Медь.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

Валентные электроны выделены жирным шрифтом. Относится к семейству d-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 1, медь расположена в 4-м периоде, IВ группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид.

Олово (лат. Stannum), Sn, химический элемент IV группы периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжёлый, мягкий и пластичный. Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120 Sn наиболее распространён (около 33%).

Историческая справка. Сплавы О. с медью - бронзы были известны уже в 4-м тыс. до н. э., а чистый металл во 2-м тыс. до н. э. В древнем мире из О. делали украшения, посуду, утварь. Происхождение названий "stannum" и "олово" точно не установлено.

Распространение в природе. О. - характерный элемент верхней части земной коры, его содержание в литосфере 2,5·10 =4 % по массе, в кислых изверженных породах 3·10 =4 %, а в более глубоких основных 1,5·10 =4 %; ещё меньше О. в мантии. Концентрирование О. связано как с магматическими процессами (известны "оловоносные граниты", пегматиты, обогащённые О.), так и с гидротермальными процессами; из 24 известных минералов О. 23 образовались при высоких температурах и давлениях. Главное промышленное значение имеет касситерит SnO 2 , меньшее - станнин Cu 2 FeSnS 4 (см. Оловянные руды ). В биосфере О. мигрирует слабо, в морской воде его лишь 3·10 =7 %; известны водные растения с повышенным содержанием О. Однако общая тенденция геохимии О. в биосфере - рассеяние.

Физические и химические свойства. О. имеет две полиморфные модификации. Кристаллическая решётка обычного b-Sn (белого О.) тетрагональная с периодами а = 5,813 , с =3,176 ; плотность 7,29 г /см 3 . При температурах ниже 13,2 °C устойчиво a-Sn (серое О.) кубической структуры типа алмаза; плотность 5,85 г /см 3 . Переход b a сопровождается превращением металла в порошок (см. Оловянная чума ), t пл 231,9 °C, t kип 2270 °C. Температурный коэффициент линейного расширения 23·10 =6 (0-100 °C); удельная теплоёмкость (0°C) 0,225 кдж /(кг ·К), т. е. 0,0536 кал /(г ·°C); теплопроводность (0 °C) 65,8 вт /(м ·К), т. е. 0,157 кал /(см ·-сек ·°C); удельное электрическое сопротивление (20 °C) 0,115·10 =6 ом ·м , т. е. 11,5·10 =6 ом ·см .Предел прочности при растяжении 16,6 Мн /м 2 (1,7 кгс /мм 2)" , относительное удлинение 80-90%; твёрдость по Бринеллю 38,3-41,2 Мн /м 2 (3,9-4,2 кгс /мм 2).При изгибании прутков О. слышен характерный хруст от взаимного трения кристаллитов.

В соответствии с конфигурацией внешних электронов атома 5s 2 5p 2 О. имеет две степени окисления: +2 и +4; последняя более устойчива; соединения Sn (П) - сильные восстановители. Сухим и влажным воздухом при температуре до 100 °C О. практически не окисляется: его предохраняет тонкая, прочная и плотная плёнка SnO 2 . По отношению к холодной и кипящей воде О. устойчиво. Стандартный электродный потенциал О. в кислой среде равен - 0,136 в . Из разбавленных HCl и H 2 SO 4 на холоду О. медленно вытесняет водород, образуя соответственно хлорид SnCl 2 и сульфат SnSO 4 . В горячей концентрированной H 2 SO 4 при нагревании О. растворяется, образуя Sn (SO 4) 2 и SO 2 . Холодная (О °C) разбавленная азотная кислота действует на О. по реакции:

4Sn + 10HNO 3 = 4Sn (NO 3) 2 + NH 4 NO 3 + 3H 2 O.

При нагревании с концентрированной HNO 3 (плотность 1,2-1,42 г /см 3) О. окисляется с образованием осадка метаоловянной кислоты H 2 SnO 3 , степень гидратации которой переменна:

3Sn+ 4HNO 3 + n H 2 O = 3H 2 SnO 3 ·n H 2 O + 4NO.

При нагревании О. в концентрированных растворах щелочей выделяется водород и образуется гексагидростаннат:

Sn + 2КОН + 4Н 2 О = K 2 + 2H 2 .

Кислород воздуха пассивирует О., оставляя на его поверхности плёнку SnO 2 . Химически двуокись SnO 2 очень устойчива, а окись SnO быстро окисляется, её получают косвенным путём. SnO 2 проявляет преимущественно кислотные свойства, SnO - основные.

С водородом О. непосредственно не соединяется; гидрид SnH 4 образуется при взаимодействии Mg 2 Sn и соляной кислоты:

Mg 2 Sn + 4HCl = 2MgCl 2 + SnH 4 .

Это бесцветный ядовитый газ, t kип -52 °C; он очень непрочен, при комнатной температуре разлагается на Sn и H 2 в течение нескольких суток, а выше 150 °C - мгновенно. Образуется также при действии водорода в момент выделения на соли О., например:

SnCl 2 + 4HCl + 3Mg = 3MgCl 2 + SnH 4 .

С галогенами О. даёт соединения состава SnX 2 и SnX 4 . Первые солеобразны и в растворах дают ионы Sn 2+ , вторые (кроме SnF 4) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием О. с сухим хлором (Sn + 2Cl 2 = SnCl 4) получают тетрахлорид SnCl 4 ; это бесцветная жидкость, хорошо растворяющая серу, фосфор, йод. Раньше по приведённой реакции удаляли О. с вышедших из строя лужёных изделий. Сейчас способ мало распространён из-за токсичности хлора и высоких потерь О.

Тетрагалогениды SnX 4 образуют комплексные соединения с H 2 O, NH 3 , окислами азота, PCl 5 , спиртами, эфирами и многими органическими соединениями. С галогеноводородными кислотами галогениды О. дают комплексные кислоты, устойчивые в растворах, например H 2 SnCl 4 и H 2 SnCl 6 . При разбавлении водой или нейтрализации растворы простых или комплексных хлоридов гидролизуются, давая белые осадки Sn (OH) 2 или H 2 SnO 3 ·n H 2 O.С серой О. даёт нерастворимые в воде и разбавленных кислотах сульфиды: коричневый SnS и золотисто-жёлтый SnS 2 .

Получение и применение. Промышленное получение О. целесообразно, если содержание его в россыпях 0,01%, в рудах 0,1%; обычно же десятые и единицы процентов. О. в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и др. ценные металлы. Первичное сырьё обогащают: россыпи - преимущественно гравитацией, руды - также флотогравитацией или флотацией.

Концентраты, содержащие 50-70% О., обжигают для удаления серы, очищают от железа действием HCl. Если же присутствуют примеси вольфрамита (Fe, Mn) WO 4 и шеелита CaWO 4 , концентрат обрабатывают HCl; образовавшуюся WO 3 ·H 2 O извлекают с помощью NH 4 OH. Плавкой концентратов с углём в электрических или пламенных печах получают черновое О. (94-98% Sn), содержащее примеси Cu, Pb, Fe, As, Sb, Bi. При выпуске из печей черновое О. фильтруют при температуре 500-600 °C через кокс или центрифугируют, отделяя этим основную массу железа. Остаток Fe и Cu удаляют вмешиванием в жидкий металл элементарной серы; примеси всплывают в виде твёрдых сульфидов, которые снимают с поверхности О. От мышьяка и сурьмы О. рафинируют аналогично - вмешиванием алюминия, от свинца - с помощью SnCl 2 . Иногда Bi и Pb испаряют в вакууме. Электролитическое рафинирование и зонную перекристаллизацию применяют сравнительно редко для получения особо чистого О.

Около 50% всего производимого О. составляет вторичный металл; его получают из отходов белой жести, лома и различных сплавов. До 40% О. идёт на лужение консервной жести, остальное расходуется на производство припоев, подшипниковых и типографских сплавов (см. Оловянные сплавы ). Двуокись SnO 2 применяется для изготовления жаростойких эмалей и глазурей. Соль - станнит натрия Na 2 SnO 3 ·3H 2 O используется в протравном крашении тканей. Кристаллический SnS 2 ("сусальное золото") входит в состав красок, имитирующих позолоту. Станнид ниобия Nb 3 Sn - один из наиболее используемых сверхпроводящих материалов.

Н. Н. Севрюков.

Токсичность самого О. и большинства его неорганических соединений невелика. Острых отравлений, вызываемых широко используемым в промышленности элементарным О., практически не встречается. Отдельные случаи отравлений, описанные в литературе, по-видимому, вызваны выделением AsH 3 при случайном попадании воды на отходы очистки О. от мышьяка. У рабочих оловоплавильных заводов при длительном воздействии пыли окиси О. (т. н. чёрное О., SnO) могут развиться пневмокониозы , у рабочих, занятых изготовлением оловянной фольги, иногда отмечаются случаи хронической экземы. Тетрахлорид О. (SnCl 4 ·5H 2 O) при концентрации его в воздухе свыше 90 мг /м 3 раздражающе действует на верхние дыхательные пути, вызывая кашель; попадая на кожу, хлорид О. вызывает её изъязвления. Сильный судорожный яд - оловянистый водород (станнометан, SnH 4), но вероятность образования его в производственных условиях ничтожна. Тяжёлые отравления при употреблении в пищу давно изготовленных консервов могут быть связаны с образованием в консервных банках SnH 4 (за счёт действия на полуду банок органических кислот содержимого). Для острых отравлений оловянистым водородом характерны судороги, нарушение равновесия; возможен смертельный исход.

Органические соединения О., особенно ди- и триалкильные, обладают выраженным действием на центральную нервную систему. Признаки отравления триалкильными соединениями: головная боль, рвота, головокружение, судороги, парезы, параличи, зрительные расстройства. Нередко развиваются коматозное состояние (см. Кома ), нарушения сердечной деятельности и дыхания со смертельным исходом. Токсичность диалкильных соединений О. несколько ниже, в клинической картине отравлений преобладают симптомы поражения печени и желчевыводящих путей. Профилактика: соблюдение правил гигиены труда.

О. как художественный материал. Отличные литейные свойства, ковкость, податливость резцу, благородный серебристо-белый цвет обусловили применение О. в декоративно-прикладном искусстве. В Древнем Египте из О. выполнялись украшения, напаянные на другие металлы. С конца 13 в. в западно-европейских странах появились сосуды и церковная утварь из О., близкие серебряным, но более мягкие по абрису, с глубоким и округлым штрихом гравировки (надписи, орнаменты). В 16 в. Ф. Брио (Франция) и К. Эндерлайн (Германия) начали отливать парадные чаши, блюда, кубки из О. с рельефными изображениями (гербы, мифологические, жанровые сцены). А. Ш. Буль вводил О. в маркетри при отделке мебели. В России изделия из О. (рамы зеркал, утварь) получили широкое распространение в 17 в.; в 18 в. на севере России расцвета достигло производство медных подносов, чайников, табакерок, отделанных оловянными накладками с эмалями. К началу 19 в. сосуды из О. уступили место фаянсовым и обращение к О. как художественному материалу стало редким. Эстетические достоинства современных декоративных изделий из О. - в чётком выявлении структуры предмета и зеркальной чистоте поверхности, достигаемой литьём без последующей обработки.

Лит.: Севрюков Н. Н., Олово, в кн.: Краткая химическая энциклопедия, т. 3, М., 1963, с. 738-39; Металлургия олова, М., 1964; Некрасов Б. В., Основы общей химии, 3 изд., т. 1, М., 1973, с. 620-43; Рипан P., Четяну И., Неорганическая химия, ч. 1 - Химия металлов, пер. с рум., М., 1971, с. 395-426; Профессиональные болезни, 3 изд., М., 1973; Вредные вещества в промышленности, ч. 2, 6 изд., М, 1971; Tardy, Les étspan>français, pt. 1-4, P., 1957-64; Mory L., Schönes Zinn, Münch., 1961; Haedeke H., Zinn, Braunschweig, 1963.

Легкий цветной металл, простое неорганическое вещество. В таблице Менделеева обозначается Sn, stannum (станнум). В переводе с латинского это значит «прочный, стойкий». Первоначально этим словом называли сплав свинца и серебра, и только значительно позже так стали именовать чистое олово. Слово «олово» имеет славянские корни и обозначает «белый».

Металл относится к рассеянным элементам, и не самым распространенным на земле. В природе он встречается в виде различных минералов. Самые важные для промышленной добычи: касситерит - оловянный камень, и станнин - оловянный колчедан. Добывают олово из руд, как правило, содержащих не более 0,1 процента этого вещества.

Свойства олова

Легкий мягкий пластичный металл серебристо-белого цвета. Имеет три структурные модификации, переходит из состояния α-олово (серое олово) в β-олово (белое олово) при температуре +13,2 °С, а в состояние γ-олово при t +161 °С. Модификации весьма сильно отличаются своими свойствами. α-олово - серый порошок, который относят к полупроводникам, β-олово («обычное олово» при комнатной температуре) - серебристый ковкий металл, γ-олово - белый хрупкий металл.

В химических реакциях олово проявляет полиморфизм, то есть кислотные и оснóвные свойства. Реактив достаточно инертный на воздухе и в воде, так как быстро покрывается прочной оксидной пленкой, защищающей его от коррозии.

Олово легко вступает в реакции с неметаллами, с трудом - с концентрированной серной и соляной кислотой; с этими кислотами в разбавленном состоянии не взаимодействует. С концентрированной и разбавленной азотной кислотой реагирует, но по-разному. В одном случае получается оловянная кислота, в другом - нитрат олова. Со щелочами вступает в реакции только при нагревании. С кислородом образует два оксида, со степенью окисления 2 и 4. Является основой целого класса оловоорганических соединений.

Воздействие на человеческий организм

Олово считается безопасным для человека, оно есть в нашем организме и каждый день мы получаем его в минимальных количествах с пищей. Его роль в функционировании организма пока не изучена.

Пары олова и его аэрозольные частицы опасны, так как при длительном и регулярном вдыхании оно может вызвать заболевания легких; ядовиты также органические соединения олова, поэтому работать с ним и его соединениями надо в средствах защиты.

Такое соединение олова как оловянистый водород, SnH 4 , может служить причиной тяжелых отравлений при употреблении в пищу очень старых консервов, в которых органические кислоты вступили в реакцию со слоем олова на стенках банки (жесть, из которой делают консервные банки - это тонкий лист железа, покрытый с двух сторон оловом). Отравление оловянистым водородом может быть даже смертельным. К его симптомам относятся судороги и чувство потери равновесия.

При понижении температуры воздуха ниже 0 °С белое олово переходит в модификацию серого олова. При этом объем вещества увеличивается почти на четверть, оловянное изделие трескается и превращается в серый порошок. Это явление стали называть «оловянной чумой».

Некоторые историки считают, что «оловянная чума» послужила одной из причин поражения армии Наполеона в России, так как превратила пуговицы на одежде французских солдат и пряжки для ремней в порошок, и тем самым оказала на армию деморализующее влияние.

А вот настоящий исторический факт: экспедиция английского полярного исследователя Роберта Скотта к Южному полюсу закончилась трагически в том числе потому, что все их топливо вылилось из запаянных оловом баков, они лишились своих мотосаней, а дойти пешком сил не хватило.

Применение

Большая часть выплавляемого олова используется в металлургии для производства различных сплавов. Эти сплавы идут на изготовление подшипников, фольги для упаковки, белой пищевой жести, бронзы, припоев, проводов, литер типографских шрифтов.
- Олово в виде фольги (станиоль) востребовано в производстве конденсаторов, посуды, изделий искусства, органных труб.
- Используется для легирования конструкционных титановых сплавов; для нанесения антикоррозионных покрытий на изделия из железа и иных металлов (лужение).
- Сплав с цирконием обладает высокой тугоплавкостью и стойкостью к коррозии.
- Оксид олова (II) - используется в качестве абразива при обработке оптических стекол.
- Входит в состав материалов, применяющихся для изготовления аккумуляторов.
- При производстве красок «под золото», красителей для шерсти.
- Искусственные радиоизотопы олова применяются как источник γ-излучения в спектроскопических методах исследования в биологии, химии, материаловедении.
- Двухлористое олово (оловянную соль) используют в аналитической химии, в текстильной индустрии для крашения, в химпроме для органического синтеза и производства полимеров, в нефтепереработке - для обесцвечивания масел, в стекольной отрасли - для обработки стекол.
- Олово борфтористое применяется для изготовления жести, бронзы, других нужных промышленности сплавов; для лужения; ламинирования.