Диаграмма состояния воды. Учебная книга по химии Фазовая диаграмма воды

Эта диаграмма показана на рис. 6.5. Области фазовой диаграммы, ограниченные кривыми, соответствуют тем условиям (температурам и давлениям), при которых устойчива только одна фаза вещества. Например, при любых значениях температуры и давления, которые соответствуют точкам диаграммы, ограниченным кривыми ВТ и ТС, вода существует в жидком состоянии. При любых температуре и давлении, соответствующих точкам диаграммы, которые расположены ниже кривых AT и ТС, вода существует в парообразном состоянии.

Кривые фазовой диаграммы соответствуют условиям, при которых какие-либо две фазы находятся в равновесии друг с другом. Например, при температурах и давлениях, соответствующих точкам кривой ТС, вода и ее пар находятся в равновесии. Это и есть кривая давления пара воды (см. рис. 3.13). В точке Л" на этой кривой жидкая вода и пар находятся в равновесии при температуре 373 К (100 0C) и давлении 1 атм (101,325 кПа); точка X представляет собой точку кипения воды при давлении 1 атм.

Кривая AT является кривой давления пара льда; такую кривую обычно называют кривой сублимации.

Кривая ВТ представляет собой кривую плавления. Она показывает, как давление влияет на температуру плавления льда: если давление возрастает, температура плавления немного уменьшается. Такая зависимость температуры плавления от давления встречается редко. Обычно возрастание давления благоприятствует образованию твердого вещества, как мы убедимся на примере рассматриваемой далее фазовой диаграммы диоксида углерода. В случае воды повышение давления приводит к разрушению водородных связей, которые в кристалле льда связывают между собой молекулы воды, заставляя их образовывать громоздкую структуру. В результате разрушения водородных связей происходит образование более плотной жидкой фазы (см. разд. 2.2).


В точке У на кривой ВТ лед находится в равновесии с водой при температуре 273 К (О 0C) и давлении 1 атм. Она представляет собой точку замерзания воды при давлении 1 атм.

Кривая ST указывает давление пара воды при температурах ниже ее точки замерзания. Поскольку вода в нормальных условиях не существует в виде жидкости при температурах ниже ее точки замерзания, каждая точка на этой кривой соответствует воде, находящейся в метастабилъном состоянии. Это означает, что при соответствующих температуре и давлении вода находится не в своем наиболее устойчивом (стабильном) состоянии. Явление, которое соответствует существованию воды в метастабильном состоянии, описываемом точками этой кривой, называется переохлаждением.

На фазовой диаграмме имеются две точки, представляющие особый интерес. Прежде всего отметим, что кривая давления пара воды заканчивается точкой С. Она называется критической точкой воды. При температурах и давлениях выше этой точки пары воды не могут быть превращены в жидкую воду никаким повышением давления (см. также разд. 3.1). Другими словами, выше этой точки паровая и жидкая формы воды перестают быть различимыми. Критическая температура воды равна 647 К, а критическое давление составляет 220 атм.

Точка Г фазовой диаграммы называется тройной точкой. В этой точке лед, жидкая вода и пары воды находятся в равновесии друг с другом. Этой точке соответствуют температура 273,16 К и давление 6,03 1000 атм. Лишь при указанных значениях температуры и давления все три фазы воды могут существовать вместе, находясь в равновесии друг с другом.

Иией может образовываться двумя способами: из росы либо непосредственно из влажного воздуха.

Образование инея из росы. Роса-это вода, образующаяся при охлаждении влажного воздуха, когда его температура понижается, пересекая (при атмосферном давлении) кривую TC на рис. 6.5. Иней образуется в результате замерзания росы, когда температура понижается настолько, что пересекает кривую ВТ.

Образование инея непосредственно из влажного воздуха. Иней образуется из росы только в том случае, если давление пара воды превышает давление тройной точки Г, т.е. больше 6,03-10~3 атм. Если же давление паров воды меньше этого значения, иней образуется непосредственно из влажного воздуха, без предварительного образования росы. В таком случае он появляется, когда понижающаяся температура пересекает кривую AT на рис. 6.5. В этих условиях образуется сухой иней.

ФАЗОВАЯ ДИАГРАММА ДИОКСИДА УГЛЕРОДА

Эта фазовая диаграмма показана на рис. 6.6.


Она подобна фазовой диаграмме воды, но отличается от нее двумя важными особенностями.

Во-первых, тройная точка диоксида углерода находится при давлении, намного превышающем 1 атм, а именно при 5,11 атм. Следовательно, при любых давлениях ниже этого значения диоксид углерода не может существовать в форме жидкости. Если твердый диоксид углерода (сухой лед) нагревать при давлении 1 атм, он сублимирует при температуре 159 К (- 78 °С). Это означает, что твердый диоксид углерода при указанных условиях переходит непосредственно в газовую фазу, минуя жидкое состояние.

Во-вторых, отличие от фазовой диаграммы воды заключается в том, что кривая ВТ имеет наклон вправо, а не влево. Молекулы диоксида углерода в твердой фазе упакованы более плотно, чем в жидкой фазе. Следовательно, в отличие от воды твердый диоксид углерода имеет большую плотность, чем жидкий. Такая особенность типична для большинства известных веществ. Таким образом, повышение внешнего давления благоприятствует образованию твердого диоксида углерода. Вследствие этого повышение давления приводит к тому, что температура плавления тоже повышается.

фазовая диаграмма серы

В разд. 3.2 было указано, что если какое-либо соединение может существовать в нескольких кристаллических формах, то считается, что оно проявляет полиморфизм. Если же какой-либо свободный элемент (простое вещество) может существовать в нескольких кристаллических формах, то такая разновидность полиморфизма называется аллотропия. Например, сера может существовать в двух аллотропных формах: в виде а-формы, имеющей орторомбическую кристаллическую структуру, и в виде (3-формы, имеющей моноклинную кристаллическую структуру.

На рис. 6.7 показана температурная зависимость свободной энергии (см. гл. 5) двух аллотропных форм серы, а также ее жидкой формы. Свободная энергия любого вещества уменьшается при повышении температуры. В случае серы а-аллотроп имеет наиболее низкую свободную энергию при температурах меньше 368,5 К и, следова тельно, наиболее устойчив при таких температурах. При температурах от 368,5 P (95,5 0C) до 393 К (120 0C) наиболее устойчив р-аллотроп. При температурах выш< 393 К наиболее устойчива жидкая форма серы.


В тех случаях, когда какой-либо элемент (простое вещество) может существовать в двух или нескольких аллотропных формах, каждая из которых устойчива в определен ном диапазоне изменения условий, считается, что он обнаруживает энантиотропик Температура, при которой два энантиотропа находятся в равновесии друг с другом называется температурой перехода. Температура энантиотропного перехода серы пр: давлении 1 атм равна 368,5 К.


Влияние давления на температуру перехода показывает кривая AB на фазово диаграмме серы, изображенной на рис. 6.8. Возрастание давления приводит к повыпи нию температуры перехода.

Сера имеет три тройные точки -А, В и С. В точке А, например, в равновесии межг собой находятся две твердые и паровая фазы. Эти две твердые фазы являются двуъ энантиотропами серы. Штриховые кривые соответствуют метастабильным условия; Например, кривая AD представляет собой кривую давления пара а-серы при темпер турах выше ее температуры перехода.

Энантиотропия других элементов

Сера-не единственный элемент, проявляющий энантиотропию. Олово, наприм« имеет два энантиотропа - серое олово и белое олово. Температура перехода меж ними при давлении 1 атм равна 286,2 К (13,2 °С).


фазовая диаграмма фосфора

В тех случаях, когда какой-либо свободный элемент (простое вещество) существует в нескольких кристаллических формах, лишь одна из которых устойчива, считается, что он проявляет монотропию.

Примером простого вещества, которое обнаруживает монотропию, является фосфор. В разд. 3.2 было указано, что фосфор имеет три формы. Устойчивым монотропом является красный фосфор. При атмосферном давлении эта форма устойчива до температуры 690 К (рис. 6.9). Белый фосфор и черный фосфор метастабильные (неустойчивые) монотропы. Черный фосфор может существовать только при высоких давлениях, которые не показаны на рис. 6.9. Тройная точка фосфора находится при температуре 862,5 К (589,5 °С) и давлении 43,1 атм. В этой точке красный фосфор, жидкий фосфор и пары фосфора находятся в равновесии друг с другом.

Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразное и т. д.).

Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления; они называются диаграммами состояния в координатах Р-t.

На рис. 10.1 приведена в схематической форме (без строгого соблюдения масштаба) диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.

Рис. 10.1. Диаграмма состояния воды в области невысоких давлений

Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.

Кривая ОА представляет зависимость давления насыщенного водяного пара от температуры: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом. Кривая ОА называется кривой равновесия жидкость - пар или кривой кипения.

Кривая ОС - кривая равновесия твердое состояние - жидкость, или кривая плавления, - показывает те пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.

Кривая ОВ - кривая равновесия твердое состояние - пар, или кривая сублимации. Ей отвечают те пары значений температуры и давления, при которых в равновесии находятся лед и водяной пар.

Все три кривые пересекаются в точке О. Координаты этой точки - это единственная пара значений температуры и давления, при которых в равновесии могут находиться все три фазы: лед, жидкая вода и пар. Она носит название тройной точки.

Тройная точка отвечает давлению водяного пара 0,610 кПа (4,58 мм рт. ст.) и температуре О,О ГС.

Диаграмма состояния воды имеет значение при разработке технологических режимов для получения пищевых продуктов. Например, как следует из диаграммы, если лед нагревается при давлении меньше чем 0,610 кПа (4,58 мм рт.ст.), то он непосредственно переходит в пар. Это является основой при разработке способов получения пищевых продуктов сушкой замораживанием.

Одной из особенностей воды, отличающих ее от других веществ, является понижение температуры плавления льда с ростом давления. Это обстоятельство отражается на диаграмме. Кривая плавления ОС на диаграмме состояния воды идет вверх влево, тогда как почти для всех других веществ она идет вверх вправо.

Превращения, происходящие с водой при атмосферном давлении, отражаются на диаграмме точками или отрезками, расположенными на горизонтали, отвечающей 101,3 кПа (760 мм рт. ст.). Так, плавление льда или кристаллизация воды отвечает точке D, кипение воды - точке Е, нагревание или охлаждение воды - отрезку DE и т. п.

В физической химии системой называется тело или группа тел, выделенных из материального мира и имеющих определенные границы, которые отделяют их от окружающей среды. Системы могут быть гомогенными и гетерогенными . Система является гомогенной, если каждый параметр имеет во всех ее частях одинаковое значение или непрерывно изменяется от точки к точке. Например, вода дистиллированная (в каком7либо сосуде) - система гомогенная, так как в любой точке все свойства этой воды или одинаковы (плотность, удельная электропроводимость, теплопроводность и др.), или непрерывно изменяются от центра системы к ее границам (например, температура). К гомогенным системам относятся смеси газов, молекулярные и ионные растворы.

Гетерогенная система состоит из нескольких макроскопических частей, отделенных одна от другой видимыми поверхностями раздела. На этих поверхностях некоторые параметры изменяются скачком. Если создать насыщенный раствор какой-либо соли в воде, чему сопутствует наличие твердой соли на дне сосуда, то такая система "раствор + твердая соль" гетерогенна. В этом примере на границе раздела скачкообразно изменяются химический состав и плотность. Гомогенные части системы, отделенные от остальных частей видимыми поверхностями раздела, называются фазами . Например, совокупность кристаллов соли в насыщенном растворе составляет одну фазу, раствор над твердой солью - другую.

Состояние системы описывается совокупностью ее свойств (или свойств фаз) - температурой, давление, массой, плотностью, химическим составом, а также связями между изменениями этих свойств.

Каждое вещество, которое может быть выделено из системы и существовать вне ее, называется составляющим веществом. В водном растворе хлористого натрия составляющими веществами могут быть Н 2 O и NaCl, но не ионы Na + и Cl - , так как они не могут существовать вне раствора.

Важная характеристика системы - число компонентов (k), под которым понимают наименьшее число составляющих веществ, с помощью которых можно описать состав каждой фазы системы в отдельности.

Если в системе не протекает химических реакций, число компонентов равно числу составляющих веществ. Например, в однофазной системе из газообразных гелия, водорода и аргона число компонентов равно числу составляющих веществ, т.е. трем, так как реакции между этими газами невозможны.

В системе, где составляющие вещества способны взаимодействовать друг с другом, число компонентов всегда меньше числа составляющих веществ. Например, водород и газообразный иод реагирует с образованием газообразного иодистого водорода. В этой системе

H 2 (г) + I 2 (г) = 2HL(г)

концентрации составляющих веществ при равновесии связаны уравнением

2 / = K,

где К - константа равновесия, имеющая определенное значение при заданной температуре. В этом случае для определения состава равновесной системы достаточно знать концентрации любых двух составляющих веществ, так как концентрация третьего определяется уравнением. Иными словами, система имеет два компонента. В общем случае число компонентов равно числу составляющих веществ минус число уравнений, связывающих концентрации этих веществ в равновесной системе.

Для описания системы необходим еще один параметр - число степеней свободы с , которое означает число независимых переменных (температура, давление, концентрация составляющих веществ), определяющих термодинамическое состояние равновесия системы. Значения этих переменных можно в известных пределах произвольно изменять, не меняя числа и вида фаз в системе. По числу степеней свободы системы называют инвариантными, у которых число степеней свободы равно нулю, моновариантными - с одной степенью свободы, бивариантными - с двумя и т.д.

В 1876 г. Гиббсом было сформулировано правило фаз, которое охватывает все случаи равновесия систем как гомогенных, так и гетерогенных. Это правило гласит: Число степеней свободы с равновесной термодинамической системы, на которую из внешних факторов влияют только давление и температура, равно числу компонентов системы k плюс 2 и минус число фаз f , т.е.

c = k + 2 - f

Диаграмма состояния - наглядный способ представления областей существования различных фаз в зависимости от внешних условий, например от давления и температуры.

Диаграмма состояния воды - система с одним компонентом H 2 O, поэтому наибольшее число фаз, которые одновременно могут находиться в равновесии, равно трем. Эти три фазы - жидкость, лед, пар. Число степеней свободы в этом случае равно нулю, т.е. нельзя изменить ни давление, ни температуру, чтобы не исчезла ни одна из фаз. Обычный лед, жидкая вода и водяной пар могут существовать в равновесии одновременно только при давлении 0,61 кПа и температуре 0,0075°С. Точка сосуществования трех фаз называется тройной точкой (O ).

Кривая ОС разделяет области пара и жидкости и представляет собой зависимость давления насыщенного водяного пара от температуры. Кривая ОС показывает те взаимосвязанные значения температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом, поэтому она называется кривой равновесия жидкость-пар или кривой кипения.

Кривая ОВ отделяет область жидкости от области льда. Она является кривой равновесия твердое состояние-жидкость и называется кривой плавления. Эта кривая показывает те взаимосвязанные пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.

Кривая OA называется кривой сублимации и показывает взаимосвязанные пары значений давления и температуры, при которых в равновесии находятся лед и водяной пар.

Глава 2. Правило фаз для однокомпонентной системы

Для однокомпонентной системы (К=1) правило фаз записывается в виде

С = 3-Ф . (9)

Если Ф = 1, то С =2 , говорят, что система бивариантна ;
Ф = 2, то С =1 , система моновариантна ;
Ф = 3, то С =0 , система нонвариантна .

Соотношение между давлением (р), температурой (Т) и объемом (V) фазы можно представить трехмерной фазовой диаграммой . Каждая точка (ее называют фигуративной точкой ) на такой диаграмме изображает некоторое равновесное состояние. Обычно удобнее работать с сечениями этой диаграммы плоскостью р - Т (при V=const) или плоскостью р -V (при T=const). Разберем более детально случай сечения плоскостью р - Т (при V=const).

2.1. Фазовая диаграмма воды

Фазовая диаграмма воды в координатах р - Т представлена на рис.1. Она составлена из 3 фазовых полей - областей различных (р,Т)-значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рис.1 буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.

Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от давления). Другими словами, эта линия отвечает двухфазному равновесию (жидкая вода) D (пар), и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 - 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т.к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные (С = 3 - 1 = 2): температура и давление.

При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374 o С и 218 атм). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает четкая межфазная граница жидкость/пар), поэтому Ф=1.

Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию (лед) D (пар) (С=1). Выше линии АС лежит область льда, ниже - область пара.

Линия АD -кривая плавления , выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию (лед) D (жидкая вода). Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды

Рис.1. Фазовая диаграмма воды

аномально: жидкая вода занимает меньший объем, чем лед . На основании принципа Ле Шателье можно предсказать, что повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т.е. точка замерзания будет понижаться.

Исследования, проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что существует семь различных кристаллических модификаций льда , каждая из которых, за исключением первой, плотнее воды . Таким образом, верхний предел линии AD - точка D, где в равновесии находятся лед I (обычный лед), лед III и жидкая вода. Эта точка находится при -22 0 С и 2450 атм (см.задачу 11).

Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,0100 o С и 4,58 мм рт.ст. Число степеней свободы С=3-3=0 и такое равновесие называют нонвариантным .

В присутствии воздуха три фазы находятся в равновесии при 1 атм и при 0 o С. Понижение тройной точки на воздухе вызвано следующим причинами:
1. растворимостью воздуха в жидкой воде при 1 атм, что приводит к снижению тройной точки на 0,0024 o С;
2. увеличением давления от 4,58 мм рт.ст. до 1 атм, которое снижает тройную точку еще на 0.0075 o С.

2.2. Фазовая диаграмма серы

Кристаллическая сера существует в виде двух модификаций – ромбической (S р) и моноклинной (S м). Поэтому возможно существование четырех фаз: ромбической, моноклинной, жидкой и газообразной (рис.2). Сплошные линии ограничивают четыре области: пара, жидкости и двух кристаллических модификаций. Сами линии отвечают моновариантным равновесиям двух соответствующих фаз. Заметьте, что линия равновесия моноклинная сера - расплав отклонена от вертикали вправо (сравните с фазовой диаграммой воды). Это означает, что при кристаллизации серы из расплава происходит уменьшение объема. В точках А, В и С в равновесии сосуществуют 3 фазы (точка А – ромбическая, моноклинная и пар, точка В – ромбическая, моноклинная и жидкость, точка С – моноклинная, жидкость и пар). Легко заметить, что есть еще одна точка О,

Рис.2. Фазовая диаграмма серы

в которой существует равновесие трех фаз – перегретой ромбической серы, переохлажденной жидкой серы и пара, пересыщенного относительно пара, равновесного с моноклинной серой. Эти три фазы образуют метастабильную систему , т.е. систему, находящуюся в состоянии относительной устойчивости . Кинетика превращения метастабильных фаз в термодинамически стабильную модификацию крайне медленна, однако при длительной выдержке или внесении кристаллов-затравок моноклинной серы все три фазы все же переходят в моноклинную серу, которая является термодинамически устойчивой в условиях, отвечающих точке О. Равновесия, которым соответствуют кривые ОА, ОВ и ОС (кривые – возгонки, плавления и испарения, соответственно) являются метастабильными.

В случае диаграммы серы мы сталкиваемся с самопроизвольным взаимным превращением двух кристаллических модификаций, которые могут протекать в прямом и обратном направлении в зависимости от условий. Такого типа превращения называются энантиотропными (обратимыми).

Взаимные превращения кристаллических фаз, которые могут протекать лишь в одном направлении , называются монотропными (необратимыми). Примером монотропного превращения является переход белого фосфора в фиолетовый.

2.3. Уравнение Клаузиуса - Клапейрона

Движение вдоль линий двухфазного равновесия на фазовой диаграмме (С=1) означает согласованное изменение давления и температуры, т.е. р=f(Т). Общий вид такой функции для однокомпонентных систем был установлен Клапейроном.

Допустим, мы имеем моновариантное равновесие (вода) D (лед) (линия AD на рис.1). Условие равновесия будет выглядеть так: для любой точки с координатами (р,Т), принадлежащей линии AD, воды (р,Т) = льда (р,Т). Для однокомпонентной системы =G/n, где G - свободная энергия Гиббса, а n - число молей (=const). Нужно выразить G=f(p,T). Формула G= H-T S для этой цели не годится, т.к. выведена для р,Т=const. В общем виде, Gє H-TS=U+pV-TS. Найдем дифференциал dG, используя правила для дифференциала суммы и произведения: dG=dU+p . dV+V . dp-T . dS-S . dT. Согласно 1-му закону термодинамики dU=dQ - dA, причем dQ=T . dS,a dA= p . dV. Тогда dG=V . dp - S . dT. Очевидно, что в равновесии dG воды /n=dG льда /n (n=n воды =n льда =сonst). Тогда v воды. dp-s воды. dT=v льда. dp-s льда. dT, где v воды, v льда - мольные (т.е. деленные на количество молей) объемы воды и льда, s воды, s льда - мольные энтропии воды и льда. Преобразуем полученное выражение в (v воды - v льда) . dp = (s воды - s льда) . dT, (10)

или: dp/dT= s фп / v фп, (11)

где s фп, v фп - изменения мольных энтропии и объема при фазовом переходе ((лед) (вода) в данном случае).

Поскольку s фп = H фп /Т фп, то чаще применяют следующий вид уравнения:

где H фп - изменения энтальпии при фазовом переходе,
v фп - изменение мольного объема при переходе,
Т фп - температура при которой происходит переход.

Уравнение Клапейрона позволяет, в частности, ответить на следующий вопрос: какова зависимость температуры фазового перехода от давления? Давление может быть внешним или создаваться за счет испарения вещества.

Пример 6. Известно, что лед имеет больший мольный объем, чем жидкая вода. Тогда при замерзании воды v фп = v льда - v воды > 0, в то же время H фп = H крист < 0, поскольку кристаллизация всегда сопровождается выделением теплоты. Следовательно, H фп /(T . v фп)< 0 и, согласно уравнению Клапейрона, производная dp/dT< 0. Это означает, что линия моновариантного равновесия (лед) D (вода) на фазовой диаграмме воды должна образовывать тупой угол с осью температур.

Пример 7. Отрицательное значение dp/dT для фазового перехода (лед) " (вода) означает, что под давлением лед может плавится при температуре ниже 0 0 С. Основываясь на этой закономерности, английские физики Тиндаль и Рейнольдс около 100 лет назад предположили, что известная легкость скольжения по льду на коньках связана с плавлением льда под острием конька ; образующаяся при этом жидкая вода действует как смазка. Проверим, так ли это, используя уравнение Клапейрона.

Плотность воды - в = 1 г/см 3 , плотность льда - л = 1.091 г/см 3 , молекулярная масса воды - М = 18 г/моль. Тогда:

V фп = М/ в -М/ л = 18/1.091-18/1= -1.501 см 3 /моль = -1.501 . 10 -6 м 3 /моль,

энтальпия плавления льда - Н фп = 6.009 кДж/моль,

Т фп = 0 0 С=273 К.

По уравнению Клапейрона:

dp/dT= - (6.009 . 10 3 Дж/моль)/(273К. 1.501 . 10 -6 м 3 /моль)=

146.6 . 10 5 Па/К= -146 атм/К.

Значит, для плавления льда при температуре, скажем, -10 0 С необходимо приложить давление 1460 атм. Но такой нагрузки лед не выдержит! Следовательно, изложенная выше идея не соответствует действительности . Реальная же причина плавления льда под коньком - теплота, выделяемая при трении.

Клаузиус упростил уравнение Клапейрона в случае испарения и возгонки , предположив, что:

2.4. Энтропия испарения

Мольная энтропия испарения S исп = H исп /Т кип равна разности S пара - S жидк. Поскольку S пара >> S жидк, то можно полагать S исп S пара. Следующее допущение состоит в том, что пар считают идеальным газом. Отсюда вытекает приблизительное постоянство мольной энтропии испарения жидкости при температуре кипения, называемое правилом Трутона.

Правило Трутона. Мольная энтропия испарения любой
жидкости составляет величину порядка 88 Дж/(моль. К).

Если при испарении разных жидкостей не происходит ассоциации или диссоциации молекул, то энтропия испарения будет приблизительно одинакова. Для соединений, образующих водородные связи (вода, спирты), энтропия испарения больше 88 Дж/(моль. К).

Правило Трутона позволяет определить энтальпию испарения жидкости по известной температуре кипения, а затем по уравнению Клаузиуса-Клапейрона определить положение линии моновариантного равновесия жидкость-пар на фазовой диаграмме.