Современные проблемы науки и образования. Графические задачи по физике и графическое решение задач А

Если в задаче линейного программирования имеется только две переменные, то ее можно решить графическим методом.

Рассмотрим задачу линейного программирования с двумя переменными и :
(1.1) ;
(1.2)
Здесь , есть произвольные числа. Задача может быть как на нахождение максимума (max), так и на нахождение минимума (min). В системе ограничений могут присутствовать как знаки , так и знаки .

Построение области допустимых решений

Графический метод решения задачи (1) следующий.
Вначале мы проводим оси координат и и выбираем масштаб. Каждое из неравенств системы ограничений (1.2) определяет полуплоскость, ограниченную соответствующей прямой.

Так, первое неравенство
(1.2.1)
определяет полуплоскость, ограниченную прямой . С одной стороны от этой прямой , а с другой стороны . На самой прямой . Чтобы узнать, с какой стороны выполняется неравенство (1.2.1), мы выбираем произвольную точку, не лежащую на прямой. Далее подставляем координаты этой точки в (1.2.1). Если неравенство выполняется, то полуплоскость содержит выбранную точку. Если неравенство не выполняется, то полуплоскость расположена с другой стороны (не содержит выбранную точку). Заштриховываем полуплоскость, для которой выполняется неравенство (1.2.1).

Тоже самое выполняем для остальных неравенств системы (1.2). Так мы получим заштрихованных полуплоскостей. Точки области допустимых решений удовлетворяют всем неравенствам (1.2). Поэтому, графически, область допустимых решений (ОДР) является пересечением всех построенных полуплоскостей. Заштриховываем ОДР. Она представляет собой выпуклый многоугольник, грани которого принадлежат построенным прямым. Также ОДР может быть неограниченной выпуклой фигурой, отрезком, лучом или прямой.

Может возникнуть и такой случай, что полуплоскости не содержат общих точек. Тогда областью допустимых решений является пустое множество. Такая задача решений не имеет.

Можно упростить метод. Можно не заштриховывать каждую полуплоскость, а вначале построить все прямые
(2)
Далее выбрать произвольную точку, не принадлежащую ни одной из этих прямых. Подставить координаты этой точки в систему неравенств (1.2). Если все неравенства выполняются, то область допустимых решений ограничена построенными прямыми и включает в себя выбранную точку. Заштриховываем область допустимых решений по границам прямых так, чтобы оно включало в себя выбранную точку.

Если хотя бы одно неравенство не выполняется, то выбираем другую точку. И так далее, пока не будет найдены одна точка, координаты которой удовлетворяют системе (1.2).

Нахождение экстремума целевой функции

Итак, мы имеем заштрихованную область допустимых решений (ОДР). Она ограничена ломаной, состоящей из отрезков и лучей, принадлежащих построенным прямым (2). ОДР всегда является выпуклым множеством. Оно может быть как ограниченным множеством, так и не ограниченным вдоль некоторых направлений.

Теперь мы можем искать экстремум целевой функции
(1.1) .

Для этого выбираем любое число и строим прямую
(3) .
Для удобства дальнейшего изложения считаем, что эта прямая проходит через ОДР. На этой прямой целевая функция постоянна и равна . такая прямая называется линией уровня функции . Эта прямая разбивает плоскость на две полуплоскости. На одной полуплоскости
.
На другой полуплоскости
.
То есть с одной стороны от прямой (3) целевая функция возрастает. И чем дальше мы отодвинем точку от прямой (3), тем больше будет значение . С другой стороны от прямой (3) целевая функция убывает. И чем дальше мы отодвинем точку от прямой (3) в другую сторону, тем меньше будет значение . Если мы проведем прямую, параллельную прямой (3), то новая прямая также будет линией уровня целевой функции, но с другим значением .

Таким образом, чтобы найти максимальное значение целевой функции, надо провести прямую, параллельную прямой (3), максимально удаленную от нее в сторону возрастания значений , и проходящую хотя бы через одну точку ОДР. Чтобы найти минимальное значение целевой функции, надо провести прямую, параллельную прямой (3) и максимально удаленную от нее в сторону убывания значений , и проходящую хотя бы через одну точку ОДР.

Если ОДР неограниченна, то может возникнуть случай, когда такую прямую провести нельзя. То есть как бы мы ни удаляли прямую от линии уровня (3) в сторону возрастания (убывания) , то прямая всегда будет проходить через ОДР. В этом случае может быть сколь угодно большим (малым). Поэтому максимального (минимального) значения нет. Задача решений не имеет.

Рассмотрим случай, когда крайняя прямая, параллельная произвольной прямой вида (3), проходит через одну вершину многоугольника ОДР. Из графика определяем координаты этой вершины. Тогда максимальное (минимальное) значение целевой функции определяется по формуле:
.
Решением задачи является
.

Также может встретиться случай, когда прямая параллельна одной из граней ОДР. Тогда прямая проходит через две вершины многоугольника ОДР. Определяем координаты и этих вершин. Для определения максимального (минимального) значения целевой функции, можно использовать координаты любой из этих вершин:
.
Задача имеет бесконечно много решений. Решением является любая точка, расположенная на отрезке между точками и , включая сами точки и .

Пример решения задачи линейного программирования графическим методом

Условие задачи

Фирма выпускает платья двух моделей А и В. При этом используется ткань трех видов. На изготовление одного платья модели А требуется 2 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. На изготовление одного платья модели В требуется 3 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. Запасы ткани первого вида составляют 21 м, второго вида - 10 м, третьего вида - 16 м. Выпуск одного изделия типа А приносит доход 400 ден. ед., одного изделия типа В - 300 ден. ед.

Составить план производства, обеспечивающий фирме наибольший доход. Задачу решить графическим методом.

Решение

Пусть переменные и означают количество произведенных платьев моделей А и В, соответственно. Тогда количество израсходованной ткани первого вида составит:
(м)
Количество израсходованной ткани второго вида составит:
(м)
Количество израсходованной ткани третьего вида составит:
(м)
Поскольку произведенное количество платьев не может быть отрицательным, то
и .
Доход от произведенных платьев составит:
(ден. ед.)

Тогда экономико-математическая модель задачи имеет вид:


Решаем графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 7) и (10,5; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 10) и (10; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (8; 0).



Заштриховываем область, чтобы точка (2; 2) попала в заштрихованную часть. Получаем четырехугольник OABC.


(П1.1) .
При .
При .
Проводим прямую через точки (0; 4) и (3; 0).

Далее замечаем, что поскольку коэффициенты при и целевой функции положительны (400 и 300), то она возрастает при увеличении и . Проводим прямую, параллельную прямой (П1.1), максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку четырехугольника OABC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.

Решение задачи: ;

Ответ

.
То есть, для получения наибольшего дохода, необходимо изготовить 8 платьев модели А. Доход при этом составит 3200 ден. ед.

Пример 2

Условие задачи

Решить задачу линейного программирования графическим методом.

Решение

Решаем графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 6) и (6; 0).

Строим прямую .
Отсюда .
При .
При .
Проводим прямую через точки (3; 0) и (7; 2).

Строим прямую .
Строим прямую (ось абсцисс).

Область допустимых решений (ОДР) ограничена построенными прямыми. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:

Заштриховываем область по границам построенных прямых, чтобы точка (4; 1) попала в заштрихованную часть. Получаем треугольник ABC.

Строим произвольную линию уровня целевой функции, например,
.
При .
При .
Проводим прямую линию уровня через точки (0; 6) и (4; 0).
Поскольку целевая функция увеличивается при увеличении и , то проводим прямую, параллельную линии уровня и максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку треугольника АВC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.

Решение задачи: ;

Ответ

Пример отсутствия решения

Условие задачи

Решить графически задачу линейного программирования. Найти максимальное и минимальное значение целевой функции.

Решение

Решаем задачу графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (2,667; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 3) и (6; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (3; 0) и (6; 3).

Прямые и являются осями координат.

Область допустимых решений (ОДР) ограничена построенными прямыми и осями координат. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:

Заштриховываем область, чтобы точка (3; 3) попала в заштрихованную часть. Получаем неограниченную область, ограниченную ломаной ABCDE.

Строим произвольную линию уровня целевой функции, например,
(П3.1) .
При .
При .
Проводим прямую через точки (0; 7) и (7; 0).
Поскольку коэффициенты при и положительны, то возрастает при увеличении и .

Чтобы найти максимум, нужно провести параллельную прямую, максимально удаленную в сторону возрастания , и проходящую хотя бы через одну точку области ABCDE. Однако, поскольку область неограниченна со стороны больших значений и , то такую прямую провести нельзя. Какую бы прямую мы не провели, всегда найдутся точки области, более удаленные в сторону увеличения и . Поэтому максимума не существует. можно сделать сколь угодно большой.

Ищем минимум. Проводим прямую, параллельную прямой (П3.1) и максимально удаленную от нее в сторону убывания , и проходящую хотя бы через одну точку области ABCDE. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.
Минимальное значение целевой функции:

Ответ

Максимального значения не существует.
Минимальное значение
.

«Иллюстративные и графические задачи в школьном курсе физики».

Задача учителя помочь ученику разобраться в методах использования знаний для решения конкретных ситуаций. Структура и содержание ЕГЭ и ГИА постоянно меняется: увеличивается доля заданий, предполагающих обработку и представление информации в различных видах (таблицы, рисунки, схемы, диаграммы, графики), также увеличивается количество качественных вопросов, проверяющих знание физических величин, понимание явлений и смысл физических законов. Большая часть заданий ЕГЭ и ГИА по физике – это задания-графики, поэтому неудивительно, что меня заинтересовала тема «Решение графических и иллюстративных задач на уроках физики».

Часто на уроках физики, особенно в 7-9 классах, предлагаю учащимся задачи-иллюстрации.Обычно использую готовые задачи из журнала «Физика в школен» и книги Н.С.Бесчастной "Физика в рисунках" (приложение1). Последнее пособие включает задачи-рисунки по курсу физики VII- VIII классов, отражающие физические явления и их применение в технике и быту. Они развивают наблюдательность учащихся, учат их самостоятельно анализировать и объяснять окружающие явления, применяя знания, полученные на уроках. Но, с учетом современных требований, я думаю, педагогам будет проще использовать это замечательное пособие в современной форме, то есть, включая материал в слайды презентации, пусть даже и с не очень современными картинками (приложение 2). Как правило, к концу 7 класса учащиеся самостоятельно могут их составить и изобразить свои задачи-рисунки.

Кроме этого часто использую на уроках пособия Ушакова М.А., Ушакова К.М. Дидактические карточки-задания. 7,8,9, 10, 11 класс (приложение 3). При решении обычных текстовых задач ученики часто избегают анализа задачи и стараются найти соответствие между величинами, указанными в условии, и их обозначениями в формуле. Такой путь решения задач не способствует развитию физического мышления и переносу знаний в область практики, где ученик должен самостоятельно определить нужные величины для решения поставленной проблемы. К тому же, приводимые в текстовых задачах исходные данные являются своеобразной подсказкой при решении задачи. В заданиях, предложенных в данных пособиях, информация необходимая для решения проблемы, находится учеником самостоятельно путем анализа изображенной на рисунках ситуации (приложение 4).

Как показали наблюдения, использование наглядных задач на уроках физики поможет не только формированию практических умений и навыков учащихся, но и развитию их логического умения и наблюдательности.

Графическими принято называть задачи, в которых условия даны в графической форме, то есть в виде функциональных диаграмм. Большинство графических упражнений и задач можно разделить на несколько групп: "чтение" графиков, графические упражнения, решение задач графическим способом, графическое изображение результатов измерений. Применение каждой из них преследует определенные цели.

Анализ уже начерченных графиков открывает широкие методические возможности обучения:

1. С помощью графика можно наглядно представить функциональную зависимость физических величин, выяснить, в чем смысл прямой и обратной пропорциональности между ними, узнать, как быстро растет или падает численное значение одной физической величины в зависимости от изменения другой, когда он достигает наибольшего или наименьшего значения.

2. График дает возможность описать, как протекает тот или иной физический процесс, позволяет наглядно изобразить наиболее существенные стороны его, обратить внимание учащихся именно на то, что является наиболее важным в изучаемом явлении.

3. Чтение графиков может заключаться и в том, что по начерченному графику, изображающему физическую закономерность, записывается ее формула.

Графические упражнения могут состоять в следующем: вычерчивание графика по табличным данным, на основании одного графика построение другого, вычерчивание графика по формуле, выражающей физическую закономерность. Эти упражнения должны выработать у учащихся навыки черчения графиков и умения, прежде всего удобно выбирать ту или иную ось координат и масштаб так, чтобы добиться возможно большей точности построения графика, а затем и отсчета по нему, разумно ограничивая себя размерами чертежа. Следует обратить внимание учащихся на то, что по начерченному по точкам графику легко определить и промежуточные значения физических величин, не указанных в таблице. Наконец, при выполнении графических упражнений учащиеся убеждаются в том, что график, построенный по табличным данным, нагляднее, чем таблица, иллюстрирует выраженную ими зависимость между численными значениями физических величин. Пособия Ушакова М.А., Ушакова К.М. Дидактические карточки-задания. 7,8,9, 10, 11 класс содержат также большое количество графических задач (приложение5).

Преподавание физики непосредственно связано с проведение демонстрационного физического эксперимента и лабораторных работ. Лабораторные работы предусмотрены учебными программами по физике и являются обязательными. Одни только манипуляции с физическими приборами дают, конечно, навыки работы с ними, но не приучают к анализу отдельных измерений, к оценке погрешностей, а в ряде случаев даже не способствуют пониманию наиболее важных сторон явления, для уяснения которых была поставлена лабораторная работа. Между тем, пользуясь графиками, можно легко контролировать и улучшать наблюдения и измерения, например в тех случаях, когда экспериментальные данные не ложатся на заданной кривой. Если ход физического процесса, наблюдаемого в лабораторной работе, неизвестен, то график дает представление о нем и возможность выяснить, какая существует зависимость между физическими величинами. Наконец, график позволяет производить ряд дополнительных расчетов. Многие лабораторные измерения требуют такой обработки и в первую очередь представления результатов в виде графиков (приложение6).

Применение на уроках иллюстративных и графических задач способствует не только актуализации знаний учащихся, но и прочности их усвоения, а также совершенствованию практических умений и навыков учащихся. Работа по выработке алгоритмов решения графических и иллюстративных задач – совместная работа учителя и ученика, которая ведет к сформированности отдельных умений, имеющих прямое отношение к ключевым компетенциям, таких как: умение сравнивать, устанавливать причинно-следственные связи, классифицировать, анализировать, проводить аналогии, обобщать, доказывать, выделять главное, выдвигать гипотезу, синтезировать. Если учащийся является активным участником учебного процесса, то и ученик и учитель получают удовлетворение от работы и богатую информацию для развития творчества.

Приложение 1.

(электронная версия пособия представлена на сайте )

Приложение 2.

Который из спортсменов первым достигнет финиша при прочих равных условиях и почему?

Который из этих мальчиков действует правильно при оказании помощи тонущему?

Одинакова ли сила трения между колесами и рельсами при движении двух одинаковых цистерн?

В какой момент легче поднимать ведро из колодца?

Какой паре гусей теплее и почему?

Приложение 3.

Зачислялись, минуя экзамены. Даже в наше время эта загадка считается одним из лучших способов тестирования внимания и логики мышления.

Ну что, приступим!

  1. Сколько туристов живет в этом лагере?
  2. Когда они сюда приехали: сегодня или несколько дней назад?
  3. На чем они сюда приехали?
  4. Далеко ли от лагеря до ближайшего селения?
  5. Откуда дует ветер: с севера или юга?
  6. Какое сейчас время дня?
  7. Куда ушел Шура?
  8. Кто вчера был дежурным (назовите по имени)?
  9. Какое сегодня число какого месяца?

Ответы:

  • Четверо. Если присмотреться, можно заметить: столовых приборов на 4 персоны, и в списке на дежурство - 4 имени.
  • Не сегодня, судя по паутине между деревом и палаткой, ребята приехали несколько дней назад.
  • На лодке. Около дерева стоят весла.
  • Нет. На картинке есть курица, значит, где-то рядом селение.
  • С юга. На палатке есть флажок, по которому можно определить, откуда дует ветер. На картинке есть дерево: с одной стороны ветки короче, с другой длиннее. Как правило, у
  • деревьев с южной стороны ветки длиннее.
  • Утро. По предыдущему вопросу мы определили, где север-юг, теперь можно понять, где восток-запад, и посмотреть на тени, которые отбрасывают предметы.
  • Он ловит бабочек. Из-за палатки виден сачок.
  • Коля. Сегодня Коля что-то ищет в рюкзаке с буквой «К», Шура ловит бабочек, а Вася фотографирует природу (потому что из рюкзака с буквой «В» виден штатив от камеры).
  • Значит, сегодня дежурит Петя, а вчера, согласно списку, дежурил Коля.
  • 8 августа. Судя по списку, раз сегодня дежурит Петя, то число - 8. А поскольку на поляне лежит арбуз, значит, август.

По статистике правильно отвечают на все вопросы только 7% .

Загадка действительно очень сложная, чтобы правильно ответить на все вопросы нужно разбираться в некоторых аспектах, и конечно нужно подключить логику и внимательность. Загадка осложняется еще не очень качественным изображением. Желаю успеха.

Глядя на рисунок, ответьте на следующие вопросы:

  1. Давно ли ребята занимаются туризмом?
  2. Хорошо ли они знакомы с домоводством?
  3. Судоходна ли река?
  4. В каком направлении она течёт?
  5. Какова глубина и ширина реки на ближайшем перекате?
  6. Долго ли будет сохнуть бельё?
  7. Намного ли вырастет ещё подсолнух?
  8. Далеко ли от города разбит лагерь туристов?
  9. Каким транспортом добирались сюда ребята?
  10. Любят ли в этих местах пельмени?
  11. Свежая ли газета? (Газета датирована 22 августа)
  12. В какой город летит самолёт?

Ответы:

  • Очевидно, недавно: опытные туристы в ложбине палатку не станут разбивать.
  • По всей вероятности, не очень: рыбу с головы не чистят, пуговицу пришивать слишком длинной ниткой неудобно, перерубать ветку топором надо на чурбачке.
  • Судоходна. Об этом говорит стоящая на берегу навигационная мачта.
  • Слева направо. Почему? Смотри ответ на следующий вопрос.
  • Навигационный знак на берегу реки устанавливается строго определенным образом. Если смотреть со стороны реки, то справа по течению подвешиваются знаки, показывающее ширину реки на ближайшем перекате, а слева - знаки, показывающие глубину. Глубина реки равна 125 см (прямоугольник 1 м, большой круг 20 см и малый круг 5 см), ширина реки - 30 м (большой круг 20 м и 2 малых по 5 м). Такие знаки устанавливаются за 500 м до переката.
  • Недолго. Есть ветер: поплавки удочек отнесло против течения.
  • Подсолнух, очевидно, сломан и воткнут в землю, так как «шляпка» его не обращена к солнцу, а сломанное растение больше расти не будет.
  • Не далее 100 км, на большем расстоянии теле антенна была бы более сложной конструкции.
  • У ребят есть, по всей вероятности, велосипеды: на земле лежит гаечный велосипедный ключ.
  • Нет. Здесь любят вареники. Мазанка, пирамидальный тополь и большая высота солнца над горизонтом (63° - по тени от подсолнуха) показывают, что это украинский пейзаж.
  • Судя по высоте солнца над горизонтом, дело происходит в июне. Для Киева, например, 63°- наибольшая угловая высота солнца. Это бывает лишь в полдень 22 июня. Газета датирована августом - стало быть, она, по крайней мере, прошлогодняя.
  • Ни в какой. Самолет производит сельскохозяйственные работы.

Вот такую задачку в 60-е годы прошлого века предлагали решить ученикам второго класса.

Глядя на рисунок, ответьте на следующие вопросы:

  1. Вверх или вниз по течению реки идет пароход?
  2. Какое время года здесь изображено?
  3. Глубока ли река в этом месте?
  4. Далеко ли пристань?
  5. На правом или левом берегу реки она находится?
  6. Какое время дня показал на рисунке художник?

Ответы:

  • Деревянные треугольники, на которых укреплены бакены, всегда направлены против течения. Пароход плывет вверх по реке.
  • На рисунке показана стая птиц; они летят в виде угла, одна его сторона короче другой: это журавли. Стайный перелет журавлей бывает весной и осенью. По кронам деревьев на опушке леса можно определить, где юг: они всегда разрастаются гуще на той стороне, которая обращена к югу. Журавли летят в южном направлении. Значит, на рисунке изображена осень.
  • Река в этом месте мелка: матрос, стоя на носу парохода, шестом измеряет глубину фарватера.
  • Очевидно, пароход причаливает к пристани: группа пассажиров, взяв вещи, приготовилась сойти с парохода.
  • Отвечая на 1-й вопрос, мы определили, в какую сторону течет река. Чтобы указать, где правый, а где левый берег реки, надо стать, повернувшись лицом, по течению. Мы знаем, что пароход причаливает к пристани. Видно, что пассажиры приготовились выходить на ту сторону, откуда вы смотрите на рисунок. Значит, ближайшая пристань находится на правом берегу реки.
  • На бакенах — фонари; ставят их перед вечером и снимают рано утром. Видно, что пастухи гонят стадо в селение. Отсюда приходим к выводу, что на рисунке показан конец дня.

Глядя на рисунок, ответьте на следующие вопросы:

  1. В какое время года показана эта квартира?
  2. В какой месяц?
  3. Ходит ли теперь в школу мальчик, которого вы видите, или у него каникулы?
  4. Есть ли в квартире водопровод?
  5. Кто живет в этой в квартире кроме отца и сына, которых вы видите на рисунке?
  6. Какова профессия отца?

Ответы:

  • Квартира показана зимой: мальчик в валенках; печка истоплена,- на это указывает открытый отдушник.
  • Месяц декабрь: открыт последний листок календаря.
  • На календаре зачеркнуты первые 7 чисел: они уже прошли. Зимние каникулы начинаются позднее. Значит, мальчик ходит в школу.
  • Если бы в квартире был водопровод, то не пришлось бы пользоваться рукомойником, который показан на рисунке.
  • Куклы указывают на то, что в семье есть девочка, вероятно, дошкольного возраста.
  • Трубка и молоточек для выслушивания больных говорят о том, что отец - по профессии врач.

Советские загадки на логику: 8 вопросов на внимательность

Еще одна советская загадка, эта посложнее будет чем предыдущая. Ответить верно на все 8 вопросов могут только 4% людей.

Глядя на рисунок, ответьте на следующие вопросы:

  1. Какое время дня изображено на рисунке?
  2. Раннюю весну или позднюю осень изображает рисунок?
  3. Судоходна ли эта река?
  4. В каком направлении течет река: на юг, север, запад или восток?
  5. Глубока ли река возле берега, у которого стоит лодка?
  6. Есть ли поблизости мост через реку?
  7. Далеко ли отсюда железная дорога?
  8. На север или юг летят журавли?

Ответы:

  • Рассмотрев рисунок, вы видите, что на поле идет сев (трактор с сеялкой и возы с зерном). Как известно, сев производится осенью или ранней весной. Осенний сев проходит, когда на деревьях еще есть листья. На рисунке же деревья и кусты совершенно голые. Следует сделать вывод, что художник изобразил раннюю весну.
  • Весной журавли летят с юга на север.
  • Бакены, то есть знаки, отмечающие фарватер, ставятся только на судоходных реках.
    Бакен укрепляется на деревянном поплавке, который углом всегда бывает направлен против течения реки.
  • Определив по полету журавлей, где север, и обратив внимание на положение треугольника с бакеном, не трудно решить, что в этом месте река течет с севера на юг.
  • Направление тени от дерева показывает, что солнце стоит на юго-востоке. Весной на этой стороне небосклона солнце бывает в 8 – 10 часов утра.
  • К лодке направляется проводник-железнодорожник с фонарем; он, очевидно, живет где-то поблизости от станции.
  • Мостки и лестница, спускающаяся к реке, а также лодка с пассажирами показывают, что в этом месте налажен постоянный перевоз через реку. Он нужен здесь потому, что поблизости нет моста.
  • На берегу вы видите мальчика с удочкой. Только при ловле рыбы на глубоком месте можно так далеко отодвигать поплавок от крючка.
    Если вам понравилась эта загадка, то попробуйте пройти еще одну

Советская загадка на логику про железную дорого (у дороги)

Глядя на рисунок, ответьте на следующие вопросы:

  1. Много ли времени осталось до новолуния?
  2. Скоро ли наступит ночь?
  3. К какому времени года относится рисунок?
  4. В какую сторону течет река?
  5. Судоходна ли она?
  6. С какой скоростью движется поезд?
  7. Давно ли прошел здесь предыдущий поезд?
  8. Долго ли будет двигаться автомашина вдоль железной дороги?
  9. К чему сейчас должен подготовиться шофер?
  10. Есть ли здесь поблизости мост?
  11. Есть ли в этом районе аэродром?
  12. Легко ли машинистам встречных поездов тормозить на этом участке состав?
  13. Дует ли ветер?

Ответы:

  • Немного. Месяц старый (видно его отражение в воде).
  • Не скоро. Старый месяц виден на утренней заре.
  • Осень. По положению солнца легко сообразить, что журавли летят на юг.
  • У рек, текущих в Северном полушарии, правый берег крутой. Значит, река течет от нас к горизонту.
  • Судоходна. Видны бакены.
  • Поезд стоит. Светится нижний глазок светофора - красный.
  • Недавно. Он находится сейчас на ближайшем блокировочном участке.
  • Дорожный знак показывает, что впереди железнодорожный переезд.
  • К торможению. Дорожный знак показывает, что впереди крутой спуск.
  • Вероятно, есть. Стоит знак, обязывающий машиниста закрыть поддувало.
  • В небе след самолета, сделавшего петлю. Фигуры высшего пилотажа разрешается делать только невдалеке от аэродромов.
  • Знак возле железнодорожного пути показывает, что встречному поезду придется подниматься вверх по уклону. Затормозить его будет нетрудно.
  • Дует. Дым паровоза стелется, а ведь поезд, как мы знаем, неподвижен.

Вот такие вот Советские загадки на логику в картинках (загадки СССР для детей). Все справились? — я думаю вряд ли! Но всё равно время было потрачено не зря!

Пишите комментарии, возможно возникнут вопросы или новые загадки от Вас.

Часто графическое представление физического процесса делает его более наглядным и тем самым облегчает понимание рассматриваемого явления. Позволяя порой значительно упростить расчеты, графики широко используются на практике для решения различных задач. Умение строить и читать их сегодня является обязательным для многих специалистов.

К графическим задачам мы относим задачи:

  • на построение, где очень помогают, рисунки, чертежи;
  • схемы, решаемые с помощью векторов, графиков, диаграмм, эпюр и номограмм.

1) Мячик бросают с земли вертикально вверх с начальной скоростью v о. Постройте график зависимости скорости мячика от времени, считая удары о землю абсолютно упругими. Сопротивлением воздуха пренебречь. [решение ]

2) Пассажир, опоздавший к поезду, заметил, что предпоследний вагон прошел мимо него за t 1 = 10 c , а последний — за t 2 = 8 с . Считая движение поезда равноускоренным, определите время опоздания. [решение ]

3) В комнате высотой H к потолку одним концом прикреплена легкая пружина жесткостью k , имеющая в недеформированном состоянии длину l о (l о < H ). На полу под пружиной размещают брусок высотой x с площадью основания S , изготовленный из материала плотностью ρ . Построить график зависимости давления бруска на пол от высоты бруска. [решение ]

4) Букашка ползет вдоль оси Ox . Определите среднюю скорость ее движения на участке между точками с координатами x 1 = 1,0 м и x 2 = 5,0 м , если известно, что произведение скорости букашки на ее координату все время остается постоянной величиной, равной c = 500 см 2 /с . [решение ]

5) К бруску массой 10 кг , находящемуся на горизонтальной поверхности, приложена сила. Учитывая, что коэффициент трения равен 0,7 , определите:

  • cилу трения для случая, если F = 50 Н и направлена горизонтально.
  • cилу трения для случая, если F = 80 Н и направлена горизонтально.
  • построить график зависимости ускорения бруска от горизонтально приложенной силы.
  • с какой минимальной силой нужно тянуть за веревку, чтобы равномерно перемещать брусок? [решение ]

6) Имеются две трубы, подсоединенных к смесителю. На каждой из труб имеется кран, которым можно регулировать поток воды по трубе, изменяя его от нуля до максимального значения J o = 1 л/с . В трубах течет вода с температурами t 1 = 10° C и t 2 = 50° C . Постройте график зависимости максимального потока воды, вытекающей из смесителя, от температуры этой воды. Тепловыми потерями пренебречь. [решение ]

7) Поздним вечером молодой человек ростом h идет по краю горизонтального прямого тротуара с постоянной скоростью v . На расстоянии l от края тротуара стоит фонарный столб. Горящий фонарь закреплен на высоте H от поверхности земли. Постройте график зависимости скорости движения тени головы человека от координаты x . [решение ]

К задачам этого типа относятся такие, в которых все или часть данных заданы в виде графических зависимостей меж­ду ними. В решении таких задач можно выделить следующие этапы:

2 этап - выяснить из приведенного графика, между какими величинами представлена связь; выяснить, какая физическая величина является независимой, т. е. аргументом; какая величина является зависимой, т. е. функцией; определить по виду графика, какая это зависимость; выяснить, что требуется - определить функцию или аргумент; по возможности, записать уравнение, которое описывает приведенный график;

3 этап - отметить на оси абсцисс (или ординат) заданное значение и восстановить перпендикуляр до пересечения с графиком. Опустить перпендикуляр из точки пересечения на ось ординат (или абсцисс) и определить значение искомой величины;

4 этап - оценить полученный результат;

5 этап - записать ответ.

Прочитать график координаты – это значит, что из графика следует определить: начальную координату и скорость движения; записать уравнение координаты; определить время и место встречи тел; определить, в какой момент времени тело имеет данную координату; определить координату, которую тело имеет в указанный момент времени.

Задачи четвертого типа - экспериментальные . Это задачи, в которых для нахождения неизвестной величины требуется часть данных измерить опытным путем. Предлагается следующий порядок работы:

2 этап - определить, какое явление, закон лежат в основе опыта;

3 этап - продумать схему опыта; определить перечень приборов и вспомогательных предметов или оборудования для проведения эксперимента; продумать последовательность проведения эксперимента; в случае необходимости разработать таблицу для регистрации результатов эксперимента;

4 этап - выполнить эксперимент и результаты записать в таблицу;

5 этап - сделать необходимые расчеты, если это требуется согласно условию задачи;

6 этап - обдумать полученные результаты и записать ответ.

Частные алгоритмы для решения задач по кинематике и динамике имеют следующий вид.

Алгоритм решения задач по кинематике:

2 этап - выписать численные значения заданных величин; выразить все величины в единицах «СИ»;

3 этап - сделать схематический чертеж (траекторию движения, векторы скорости, ускорения, перемещения и т.д.);

4 этап - выбрать систему координат (при этом следует выбрать такую систему, чтобы уравнения были несложными);


5 этап - составить для данного движения основные уравнения, которые отражают математическую связь между изображенными на схеме физическими величинами; число уравнений должно быть равно числу неизвестных величин;

6 этап - решить составленную систему уравнений в общем виде, в буквенных обозначениях, т.е. получить расчетную формулу;

7 этап - выбрать систему единиц измерения («СИ»), подставить в расчетную формулу вместо букв наименования единиц, произвести действия с наименованиями и проверить, получается ли о результате единица измерения искомой величины;

8 этап - выразить все заданные величины в избранной системе единиц; подставить в расчетные формулы и вычислить значения искомых величин;

9 этап - проанализировать решение и сформулировать ответ.

Сравнение последовательности решения задач по динамике и кинематике дает возможность увидеть, что некоторые пункты являются общими для обоих алгоритмов, это помогает лучше их запомнить и более успешно применять при решении задач.

Алгоритм решения задач по динамике:

2 этап - записать условие задачи, выразив все величины в единицах «СИ»;

3 этап - сделать чертеж с указанием все сил, действующих на тело, векторы ускорений и системы координат;

4 этап - записать уравнение второго закона Ньютона в векторном виде;

5 этап - записать основное уравнение динамики (уравнение второго закона Ньютона) в проекциях на оси координат с учетом направления осей координат и векторов;

6 этап - найти все величины, входящие в эти уравнения; подставить в уравнения;

7 этап - решить задачу в общем виде, т.е. решить уравнение или систему уравнений относительно неизвестной величины;

8 этап - проверить размерность;

9 этап - получить численный результат и соотнести его с реальными значениями величин.

Алгоритм решения задач на тепловые явления:

1 этап - внимательно прочитать условие задачи, выяснить, сколько тел участвует в теплообмене и какие физические процессы происходят (например, нагревание или охлаждение, плавление или кристаллизация, парообразование или конденсация);

2 этап - кратко записать условие задачи, дополняя необходимыми табличными величинами; все величины выразить в системе «СИ»;

3 этап - записать уравнение теплового баланса с учетом знака количества теплоты (если тело получает энергию, то ставят знак «+», если тело отдает - знак «-»);

4 этап - записать необходимые формулы для расчета количества теплоты;

5 этап - записать полученное уравнение в общем виде относительно искомых величин;

6 этап - произвести проверку размерности полученной величины;

7 этап - вычислить значения искомых величин.


РАСЧЕТНО-ГРАФИЧЕСКИЕ РАБОТЫ

Работа № 1

ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ МЕХАНИКИ

Основные положения:

Механическое движение – изменение положения тела относительно других тел или изменение положения частей тела со временем.

Материальная точка – тело, размерами которого можно пренебречь в данной задаче.

Физические величины бывают векторные и скалярные.

Вектором называется величина, характеризующаяся числовым значением и направлением (сила, скорость, ускорение и т.д.).

Скаляром называется величина, характеризующаяся только числовым значением.(масса, объем, время и т.д.).

Траектория - линия, вдоль которой движется тело.

Пройденный путь - длина траектории движущегося тела, обозначение - l , единица измерения в системе СИ: 1 м, скаляр (имеет модуль, но не имеет направления), однозначно не определяет конечное положение тела.

Перемещение - вектор, соединяющий начальное и последующее положения тела, обозначение - S, единица измерения в СИ: 1 м, вектор (имеет модуль и направление), однозначно определяет конечное положение тела.

Скорость – векторная физическая величина, равная отношению перемещения тела к промежутку времени, за которое это перемещение произошло.

Механическое движение бывает поступательным, вращательным и колебательным.

Поступательным движением называют движение, при котором любая прямая, жестко связанная с телом, перемещается, оставаясь параллельной самой себе. Примерами поступательного движения являются движение поршня в цилиндре двигателя, движение кабин «чертова колеса» и т.д. При поступательном движении все точки твердого тела описывают одинаковые траектории и в каждый момент времени имеют одинаковые скорости и ускорения.

Вращательным движением абсолютно твердого тела называют такое движение, при котором все точки тела движутся в плоскостях, перпендикулярных к неподвижной прямой, называемой осью вращения , и описывают окружности, центры которых лежат на этой оси (роторы турбин, генераторов и двигателей).

Колебательное движение – это движение, периодически повторяющееся в пространстве с течением времени.

Системой отсчета называется совокупность тела отсчета, системы координат и способа измерения времени.

Тело отсчета – любое тело, выбираемое произвольно и условно считаемое неподвижным, относительно которого изучается расположение и движение других тел.

Система координат состоит из выделенных в пространстве направлений – осей координат, пересекающихся в одной точке, называемой началом отсчета и выбранного единичного отрезка (масштаба). Система координат нужна для количественного описания движения.

В декартовой системе координат положение точки А в данный момент времени по отношению к этой системе определяется тремя координатами х, у и z, или радиусом-вектором .

Траекторией движения материальной точки называется линия, описываемая этой точкой в пространстве. В зависимости от формы траектории движение может быть прямолинейным и криволинейным .

Движение называется равномерным, если скорость материальной точки с течением времени не изменяется.

Действия с векторами:

Скорость – векторная величина, показывающая направление и быстроту перемещения тела в пространстве.

Всякому механическому движению присущ абсолютный и относительный характер .

Абсолютный смысл механического движения состоит в том, что если два тела сближаются или удаляются друг от друга, то они будут сближаться или удаляться в любой системе отсчета.

Относительность механического движения заключается в том, что:

1) бессмысленно говорить о движении, не указав тело отсчета;

2) в разных системах отсчета одно и то же движение может выглядеть по-разному.

Закон сложения скоростей : Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости этого же тела относительно подвижной системы отсчета и скорости подвижной системы относительно неподвижной.

Контрольные вопросы

1. Определение механического движения (примеры).

2. Виды механического движения (примеры).

3. Понятие материальной точки (примеры).

4. Условия, при выполнении которых тело можно считать материальной точкой.

5. Поступательное движение (примеры).

6. Что включает в себя система отсчета?

7. Что такое равномерное движение (примеры)?

8. Что называется скоростью?

9. Закон сложения скоростей.

Выполните задания:

1. Улитка проползла прямолинейно 1 м, затем сделала поворот, описав четверть окружности радиусом 1 м, и проползла далее перпендикулярно первоначальному направлению движения еще 1 м. Сделать чертеж, рассчитать пройденный путь и модуль перемещения, на чертеже не забыть показать вектор перемещения улитки.

2. Движущийся автомобиль сделал разворот, описав половину окружности. Сделать чертеж, на котором указать путь и перемещение автомобиля за треть времени разворота. Во сколько раз путь, пройденный за указанный промежуток времени, больше модуля вектора соответствующего перемещения?

3. Может ли спортсмен на водных лыжах двигаться быстрее катера? Может ли катер двигаться быстрее лыжника?