Системы линейных уравнений. Линейные уравнения Где используются линейные уравнения

Сперва необходимо понять, что же это такое.

Есть простое определение линейного уравнения , которое дают в обычной школе: «уравнение, в котором переменная встречается только в первой степени». Но оно не совсем верно: уравнение не является линейным, оно даже не приводится к такому, оно приводится к квадратичному.

Более точное определение таково: линейное уравнение – это уравнение, которое с помощью эквивалентных преобразований можно привести к виду , где title="a,b in bbR, ~a0">. На деле мы будем приводить это уравнение к виду путём переноса в правую часть и деления обеих частей уравнения на . Осталось разъяснить, какие уравнения и как мы можем привести к такому виду, и, самое главное, что дальше делать с ними, чтобы решить его.

На самом деле, чтобы понять, является ли уравнение линейным или нет, его необходимо сперва упростить, то есть привести к виду, где его классификация будет однозначна. Запомните, с уравнением можно делать всё, что угодно, что не изменит его корней - это и есть эквивалентное преобразование . Из самых простых эквивалентных преобразований можно выделить:

  1. раскрытие скобок
  2. приведение подобных
  3. умножение и/или деление обеих частей уравнения на ненулевое число
  4. прибавление и/или вычитание из обеих частей одного и того же числа или выражения*
Эти преобразования Вы можете делать безболезненно, не задумываясь о том, "испортите" Вы уравнение или нет.
*Частной интерпретацией последнего преобразования является "перенос" слагаемых из одной части в другую со сменой знака.

Пример 1:
(раскроем скобки)
(прибавим к обеим частям и вычитание /перенесём со сменой знака числа влево, а переменные вправо)
(приведём подобные)
(разделим на 3 обе части уравнения)

Вот мы и получили уравнение, которое имеет такие же корни, как и исходное. Напомним читателю, что "решить уравнение" - значит найти все его корни и доказать, что других нет, а "корень уравнения" - это такое число, которое будучи подставленным вместо неизвестной, обратит уравнение в верное равенство. Ну так в последнее уравнение найти число, обращающее уравнение в верное равенство очень просто - это число . Никакое другое число тождества из данного уравнения не сделает. Ответ:

Пример 2:
(умножим обе части уравнения на , предварительно убедившись, что мы не умножаем на : title="x3/2"> и title="x3">. То есть если такие корни получатся, то мы их обязаны будем выкинуть.)
(раскроем скобки)
(перенесём слагаемые)
(приведём подобные)
(разделим обе части на )

Примерно так и решаются все линейные уравнения. Для читателей помладше, скорее всего, данное объяснение показалось сложным, поэтому предлагаем версию "линейные уравнения для 5 класса"

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

При решении линейных уравнений, мы стремимся найти корень, то есть такое значение для переменной, которое превратит уравнение в правильное равенство.

Чтобы найти корень уравнения нужно равносильными преобразования привести данное нам уравнение к виду

\(x=[число]\)

Это число и будет корнем.

То есть, мы преобразовываем уравнение, делая его с каждым шагом все проще, до тех пор, пока не сведем к совсем примитивному уравнению «икс = число», где корень – очевиден. Наиболее часто применяемыми при решении линейных уравнений являются следующие преобразования:

Например : прибавим \(5\) к обеим частям уравнения \(6x-5=1\)

\(6x-5=1\) \(|+5\)
\(6x-5+5=1+5\)
\(6x=6\)

Обратите внимание, что тот же результат мы могли бы получить быстрее – просто записав пятерку с другой стороны уравнения и поменяв при этом ее знак. Собственно, именно так и делается школьный «перенос через равно со сменой знака на противоположный».

2. Умножение или деление обеих частей уравнения на одинаковое число или выражение.

Например : разделим уравнение \(-2x=8\) на минус два

\(-2x=8\) \(|:(-2)\)
\(x=-4\)

Обычно данный шаг выполняется в самом конце, когда уравнение уже приведено к виду \(ax=b\), и мы делим на \(a\), чтобы убрать его слева.

3. Использование свойств и законов математики: раскрытие скобок, приведение подобных слагаемых, сокращение дробей и т.д.

Прибавляем \(2x\) слева и справа

Вычитаем \(24\) из обеих частей уравнения

Опять приводим подобные слагаемые

Теперь делим уравнение на \(-3\), тем самым убирая перед иксом в левой части.

Ответ : \(7\)

Ответ найден. Однако давайте его проверим. Если семерка действительно корень, то при подстановке ее вместо икса в первоначальное уравнение должно получиться верное равенство - одинаковые числа слева и справа. Пробуем.

Проверка:
\(6(4-7)+7=3-2\cdot7\)
\(6\cdot(-3)+7=3-14\)
\(-18+7=-11\)
\(-11=-11\)

Сошлось. Значит, семерка и в самом деле является корнем исходного линейного уравнения.

Не ленитесь проверять подстановкой найденные вами ответы, особенно если вы решаете уравнение на контрольной или экзамене.

Остается вопрос – а как определить, что делать с уравнением на очередном шаге? Как именно его преобразовывать? Делить на что-то? Или вычитать? И что конкретно вычитать? На что делить?

Ответ прост:

Ваша цель – привести уравнение к виду \(x=[число]\), то есть, слева икс без коэффициентов и чисел, а справа – только число без переменных. Поэтому смотрите, что вам мешает и делайте действие, обратное тому, что делает мешающий компонент.

Чтобы лучше это понять, разберем по шагам решение линейного уравнения \(x+3=13-4x\).

Давайте подумаем: чем данное уравнение отличается от \(x=[число]\)? Что нам мешает? Что не так?

Ну, во-первых, мешает тройка, так как слева должен быть только одинокий икс, без чисел. А что «делает» тройка? Прибавляется к иксу. Значит, чтобы ее убрать - вычтем такую же тройку. Но если мы вычитаем тройку слева, то должны вычесть ее и справа, чтобы равенство не было нарушено.

\(x+3=13-4x\) \(|-3\)
\(x+3-3=13-4x-3\)
\(x=10-4x\)

Хорошо. Теперь что мешает? \(4x\) справа, ведь там должны быть только числа. \(4x\) вычитается - убираем прибавлением .

\(x=10-4x\) \(|+4x\)
\(x+4x=10-4x+4x\)

Теперь приводим подобные слагаемые слева и справа.

Уже почти готово. Осталось убрать пятерку слева. Что она «делает»? Умножается на икс. Поэтому убираем ее делением .

\(5x=10\) \(|:5\)
\(\frac{5x}{5}\) \(=\)\(\frac{10}{5}\)
\(x=2\)

Решение завершено, корень уравнения – двойка. Можете проверить подстановкой.

Заметим, что чаще всего корень в линейных уравнениях только один . Однако могут встретиться два особых случая.

Особый случай 1 – в линейном уравнении нет корней.

Пример . Решить уравнение \(3x-1=2(x+3)+x\)

Решение :

Ответ : нет корней.

На самом деле, то, что мы придем к такому результату было видно раньше, еще когда мы получили \(3x-1=3x+6\). Вдумайтесь: как могут быть равны \(3x\) из которых вычли \(1\), и \(3x\) к которым прибавили \(6\)? Очевидно, что никак, ведь с одним и тем же сделали разные действия! Понятно, что результаты будут отличаться.

Особый случай 2 – в линейном уравнении бесконечное количество корней.

Пример . Решить линейное уравнение \(8(x+2)-4=12x-4(x-3)\)

Решение :

Ответ : любое число.

Это, кстати, было заметно еще раньше, на этапе: \(8x+12=8x+12\). Действительно, слева и справа – одинаковые выражения. Какой икс ни подставь – будет одно и то же число и там, и там.

Более сложные линейные уравнения.

Исходное уравнение не всегда сразу выглядит как линейное, иногда оно «маскируется» под другие, более сложные уравнения. Однако в процессе преобразований маскировка спадает.

Пример . Найдите корень уравнения \(2x^{2}-(x-4)^{2}=(3+x)^{2}-15\)

Решение :

\(2x^{2}-(x-4)^{2}=(3+x)^{2}-15\)

Казалось бы, здесь есть икс в квадрате – это не линейное уравнение! Но не спешите. Давайте применим

\(2x^{2}-(x^{2}-8x+16)=9+6x+x^{2}-15\)

Почему результат раскрытия \((x-4)^{2}\) стоит в скобке, а результат \((3+x)^{2}\) нет? Потому что перед первым квадратом стоит минус, который изменит все знаки. И чтобы не забыть об этом – берем результат в скобки, которую теперь раскрываем.

\(2x^{2}-x^{2}+8x-16=9+6x+x^{2}-15\)

Приводим подобные слагаемые

\(x^{2}+8x-16=x^{2}+6x-6\)

\(x^{2}-x^{2}+8x-6x=-6+16\)

Опять приводим подобные.

Вот так. Оказывается, исходное уравнение – вполне себе линейное, а иксы в квадрате не более чем ширма, чтоб нас запутать. :) Дорешиваем, деля уравнение на \(2\), и получаем ответ.

Ответ : \(x=5\)


Пример . Решить линейное уравнение \(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

Решение :

\(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

Уравнение не похоже на линейное, дроби какие-то... Однако давайте избавимся от знаменателей, умножив обе части уравнения на общий знаменатель всех – шестерку

\(6\cdot\)\((\frac{x+2}{2}\) \(-\) \(\frac{1}{3})\) \(=\) \(\frac{9+7x}{6}\) \(\cdot 6\)

Раскрываем скобку слева

\(6\cdot\)\(\frac{x+2}{2}\) \(-\) \(6\cdot\)\(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\) \(\cdot 6\)

Теперь сокращаем знаменатели

\(3(x+2)-2=9+7x\)

Вот теперь похоже на обычное линейное! Дорешиваем его.

Переносом через равно собираем иксы справа, а числа слева

Ну и поделив на \(-4\) правую и левую часть, получаем ответ

Ответ : \(x=-1,25\)

В данной статье рассмотрим принцип решения таких уравнений как линейные уравнения. Запишем определение этих уравнений, зададим общий вид. Разберем все условия нахождения решений линейных уравнений, используя, в том числе, практические примеры.

Обратим внимание, что материал ниже содержит информацию по линейным уравнениям с одной переменной. Линейные уравнения с двумя переменными рассматриваются в отдельной статье.

Что такое линейное уравнение

Определение 1

Линейное уравнение – это уравнение, запись которого такова:
a · x = b , где x – переменная, a и b – некоторые числа.

Такая формулировка использована в учебнике алгебры (7 класс) Ю.Н.Макарычева.

Пример 1

Примерами линейных уравнений будут:

3 · x = 11 (уравнение с одной переменной x при а = 5 и b = 10 );

− 3 , 1 · y = 0 (линейное уравнение с переменной y , где а = - 3 , 1 и b = 0);

x = − 4 и − x = 5 , 37 (линейные уравнения, где число a записано в явном виде и равно 1 и - 1 соответственно. Для первого уравнения b = - 4 ; для второго - b = 5 , 37 ) и т.п.

В различных учебных материалах могут встречаться разные определения. К примеру, Виленкин Н.Я. к линейным относит также те уравнения, которые возможно преобразовать в вид a · x = b при помощи переноса слагаемых из одной части в другую со сменой знака и приведения подобных слагаемых. Если следовать такой трактовке, уравнение 5 · x = 2 · x + 6 – также линейное.

А вот учебник алгебры (7 класс) Мордковича А.Г. задает такое описание:

Определение 2

Линейное уравнение с одной переменной x – это уравнение вида a · x + b = 0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

Пример 2

Примером линейных уравнений подобного вида могут быть:

3 · x − 7 = 0 (a = 3 , b = − 7) ;

1 , 8 · y + 7 , 9 = 0 (a = 1 , 8 , b = 7 , 9) .

Но также там приведены примеры линейных уравнений, которые мы уже использовали выше: вида a · x = b , например, 6 · x = 35 .

Мы сразу условимся, что в данной статье под линейным уравнением с одной переменной мы будем понимать уравнение записи a · x + b = 0 , где x – переменная; a , b – коэффициенты. Подобная форма линейного уравнения нам видится наиболее оправданной, поскольку линейные уравнения – это алгебраические уравнения первой степени. А прочие уравнения, указанные выше, и уравнения, приведенные равносильными преобразованиями в вид a · x + b = 0 , определим, как уравнения, сводящиеся к линейным уравнениям.

При таком подходе уравнение 5 · x + 8 = 0 – линейное, а 5 · x = − 8 - уравнение, сводящееся к линейному.

Принцип решения линейных уравнений

Рассмотрим, как определить, будет ли заданное линейное уравнение иметь корни и, если да, то сколько и как их определить.

Определение 3

Факт наличия корней линейного уравнения определятся значениями коэффициентов a и b . Запишем эти условия:

  • при a ≠ 0 линейное уравнение имеет единственный корень x = - b a ;
  • при a = 0 и b ≠ 0 линейное уравнение не имеет корней;
  • при a = 0 и b = 0 линейное уравнение имеет бесконечно много корней. По сути в данном случае любое число может стать корнем линейного уравнения.

Дадим пояснение. Нам известно, что в процессе решения уравнения возможно осуществлять преобразование заданного уравнения в равносильное ему, а значит имеющее те же корни, что исходное уравнение, или также не имеющее корней. Мы можем производить следующие равносильные преобразования:

  • перенести слагаемое из одной части в другую, сменив знак на противоположный;
  • умножить или разделить обе части уравнения на одно и то же число, не равное нулю.

Таким образом, преобразуем линейное уравнение a · x + b = 0 , перенеся слагаемое b из левой части в правую часть со сменой знака. Получим: a · x = − b .

Итак, производим деление обеих частей уравнения на не равное нулю число а, получив в итоге равенство вида x = - b a . Т.е., когда a ≠ 0 , исходное уравнение a · x + b = 0 равносильно равенству x = - b a , в котором очевиден корень - b a .

Методом от противного возможно продемонстрировать, что найденный корень – единственный. Зададим обозначение найденного корня - b a как x 1 . Выскажем предположение, что имеется еще один корень линейного уравнения с обозначением x 2 . И конечно: x 2 ≠ x 1 , а это, в свою очередь, опираясь на определение равных чисел через разность, равносильно условию x 1 − x 2 ≠ 0 . С учетом вышесказанного мы можем составить следующие равенства, подставив корни:
a · x 1 + b = 0 и a · x 2 + b = 0 .
Свойство числовых равенств дает возможность произвести почленное вычитание частей равенств:

a · x 1 + b − (a · x 2 + b) = 0 − 0 , отсюда: a · (x 1 − x 2) + (b − b) = 0 и далее a · (x 1 − x 2) = 0 . Равенство a · (x 1 − x 2) = 0 является неверным, поскольку ранее условием было задано, что a ≠ 0 и x 1 − x 2 ≠ 0 . Полученное противоречие и служит доказательством того, что при a ≠ 0 линейное уравнение a · x + b = 0 имеет лишь один корень.

Обоснуем еще два пункта условий, содержащие a = 0 .

Когда a = 0 линейное уравнение a · x + b = 0 запишется как 0 · x + b = 0 . Свойство умножения числа на нуль дает нам право утверждать, что какое бы число не было взято в качестве x , подставив его в равенство 0 · x + b = 0 , получим b = 0 . Равенство справедливо при b = 0 ; в прочих случаях, когда b ≠ 0 , равенство становится неверным.

Таким образом, когда a = 0 и b = 0 , любое число может стать корнем линейного уравнения a · x + b = 0 , поскольку при выполнении этих условий, подставляя вместо x любое число, получаем верное числовое равенство 0 = 0 . Когда же a = 0 и b ≠ 0 линейное уравнение a · x + b = 0 вовсе не будет иметь корней, поскольку при выполнении указанных условий, подставляя вместо x любое число, получаем неверное числовое равенство b = 0 .

Все приведенные рассуждения дают нам возможность записать алгоритм, дающий возможность найти решение любого линейного уравнения:

  • по виду записи определяем значения коэффициентов a и b и анализируем их;
  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число станет корнем заданного уравнения;
  • при a = 0 и b ≠ 0
  • при a , отличном от нуля, начинаем поиск единственного корня исходного линейного уравнения:
  1. перенесем коэффициент b в правую часть со сменой знака на противоположный, приводя линейное уравнение к виду a · x = − b ;
  2. обе части полученного равенства делим на число a , что даст нам искомый корень заданного уравнения: x = - b a .

Собственно, описанная последовательность действий и есть ответ на вопрос, как находить решение линейного уравнения.

Напоследок уточним, что уравнения вида a · x = b решаются по похожему алгоритму с единственным отличием, что число b в такой записи уже перенесено в нужную часть уравнения, и при a ≠ 0 можно сразу выполнять деление частей уравнения на число a .

Таким образом, чтобы найти решение уравнения a · x = b , используем такой алгоритм:

  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число может стать его корнем;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , не равном нулю, обе части уравнения делятся на число a , что дает возможность найти единственный корень, который равен b a .

Примеры решения линейных уравнений

Пример 3

Необходимо решить линейное уравнение 0 · x − 0 = 0 .

Решение

По записи заданного уравнения мы видим, что a = 0 и b = − 0 (или b = 0 , что то же самое). Таким образом, заданное уравнение может иметь бесконечно много корней или любое число.

Ответ: x – любое число.

Пример 4

Необходимо определить, имеет ли корни уравнение 0 · x + 2 , 7 = 0 .

Решение

По записи определяем, что а = 0 , b = 2 , 7 . Таким образом, заданное уравнение не будет иметь корней.

Ответ: исходное линейное уравнение не имеет корней.

Пример 5

Задано линейное уравнение 0 , 3 · x − 0 , 027 = 0 . Необходимо решить его.

Решение

По записи уравнения определяем, что а = 0 , 3 ; b = - 0 , 027 , что позволяет нам утверждать наличие единственного корня у заданного уравнения.

Следуя алгоритму, переносим b в правую часть уравнения, сменив знак, получаем: 0 , 3 · x = 0 , 027 . Далее разделим обе части полученного равенства на а = 0 , 3 , тогда: x = 0 , 027 0 , 3 .

Осуществим деление десятичных дробей:

0 , 027 0 , 3 = 27 300 = 3 · 9 3 · 100 = 9 100 = 0 , 09

Полученный результат есть корень заданного уравнения.

Кратко решение запишем так:

0 , 3 · x - 0 , 027 = 0 , 0 , 3 · x = 0 , 027 , x = 0 , 027 0 , 3 , x = 0 , 09 .

Ответ: x = 0 , 09 .

Для наглядности приведем решение уравнения записи a · x = b .

Пример N

Заданы уравнения: 1) 0 · x = 0 ; 2) 0 · x = − 9 ; 3) - 3 8 · x = - 3 3 4 . Необходимо решить их.

Решение

Все заданные уравнения отвечают записи a · x = b . Рассмотрим по очереди.

В уравнении 0 · x = 0 , a = 0 и b = 0 , что означает: любое число может быть корнем этого уравнения.

Во втором уравнении 0 · x = − 9: a = 0 и b = − 9 , таким образом, это уравнение не будет иметь корней.

По виду последнего уравнения - 3 8 · x = - 3 3 4 запишем коэффициенты: a = - 3 8 , b = - 3 3 4 , т.е. уравнение имеет единственный корень. Найдем его. Поделим обе части уравнения на a , получим в результате: x = - 3 3 4 - 3 8 . Упростим дробь, применив правило деления отрицательных чисел с последующим переводом смешанного числа в обыкновенную дробь и делением обыкновенных дробей:

3 3 4 - 3 8 = 3 3 4 3 8 = 15 4 3 8 = 15 4 · 8 3 = 15 · 8 4 · 3 = 10

Кратко решение запишем так:

3 8 · x = - 3 3 4 , x = - 3 3 4 - 3 8 , x = 10 .

Ответ: 1) x – любое число, 2) уравнение не имеет корней, 3) x = 10 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter