Строение и функции хромосом. Размножение в органическом мире

Хромосомы эукариот

Центромера

Первичная перетяжка

X. п., в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода .

Спутники (сателлиты)

Сателлит - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка ) - специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема - это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции , термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

  • паранемическую (элементы спирали легко разъединить);
  • плектонемическую (нити плотно переплетаются).

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

  • Генные (точковые) мутации (изменения на молекулярном уровне);
  • Аберрации (микроскопические изменения, различимые при помощи светового микроскопа):

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла . Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов .

Политенные хромосомы

Впервые обнаружены Бальбиани в -го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз , кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щеток

Бактериальные хромосомы

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Литература

  • Э. де Робертис, В. Новинский, Ф. Саэс Биология клетки. - M.: Мир, 1973. - С. 40-49.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Хромосомы" в других словарях:

    - (от хромо... и сома), органоиды клеточного ядра, являющиеся носителями генов и определяющие наследств, свойства клеток и организмов. Способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду… … Биологический энциклопедический словарь

    - [Словарь иностранных слов русского языка

    - (от хромо... и греч. soma тело) структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. Самоудвоение и закономерное распределение хромосом по… … Большой Энциклопедический словарь

    ХРОМОСОМЫ, структуры, несущие генетическую информацию об организме, которая содержится только в ядрах клеток ЭУКАРИОТОВ. Хромосомы нитеобразны, они состоят из ДНК и обладают специфическим набором ГЕНОВ. У каждого вида организмов есть характерное… … Научно-технический энциклопедический словарь

    Хромосомы - Структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. В каждой клетке человска присутствует 46 хромосом, разделенных на 23 пары, из которых 22… … Большая психологическая энциклопедия

    Хромосомы - * храмасомы * chromosomes самовоспроизводящиеся элементы клеточного ядра, сохраняющие структурнофункциональную индивидуальность и окрашивающиеся основными красителями. Являются главными материальными носителями наследственной информации: генов… … Генетика. Энциклопедический словарь

    ХРОМОСОМЫ, ом, ед. хромосома, ы, жен. (спец.). Постоянная составная часть ядра животных и растительных клеток, носители наследственной генетической информации. | прил. хромосомный, ая, ое. Х. набор клетки. Хромосомная теория наследственности.… … Толковый словарь Ожегова

Сегодня мы предлагаем как можно подробнее рассмотреть интересный вопрос из школьного курса биологии - что такое хромосома? В биологии этот термин встречается довольно часто, но что он значит? Давайте разбираться.

Начнем, пожалуй, с понятия «период жизнедеятельности клетки». Это промежуток времени, который начинается с самого ее возникновения и до смерти. Еще принято называть этот интервал времени - жизненным циклом. Даже в одном и том же организме длительность цикла варьируется в зависимости от разновидности. Для примера возьмем клетку эпителиальной ткани и печени, ЖЦ первой составляет всего порядка пятнадцати часов, а второй - год. Еще важно заметить и тот факт, что весь период жизнедеятельности клетки делится на два интервала:

  • интерфаза;
  • деление.

Немаловажная роль в жизненном цикле клетки принадлежит именно хромосомам. Перейдем к определению, что такое хромосома в биологии? Это комплекс молекул ДНК и белков. Об их функциях мы поговорим более подробно далее в статье.

Немного истории

Что такое хромосома в биологии, было известно еще в середине девятнадцатого века, благодаря исследованиям немецкого ботаника В. Гофмейстера. Ученый в это время увлекся изучением деления клеток у растения под названием традесканция. Что же он смог открыть нового? Для начала стало ясно, что перед делением клетки происходит и деление ядра. Но это не самое интересное! Еще до того, как образуется два дочерних ядра, происходит расщепление основного на очень тонкие ниточки. Их как раз таки и можно увидеть только под микроскопом, окрасив специальным красителем.

Тогда Гофмейстер дал им название - хромосомы. Что такое хромосома в биологии? Если переводить термин на русский язык дословно, то мы получим «окрашенные тела». Уже немного позже ученые заметили, что эти нитевидные частицы есть в ядре абсолютно любой растительной или животной клетки. Но еще раз обращаем ваше внимание на то, что количество их варьируется в зависимости от вида клетки и организма. Если мы возьмем человека, то в его клетках содержится всего сорок шесть хромосом.

Теория наследственности

Мы уже дали определение, что такое хромосома в биологии. Теперь предлагаем переходить к генетике, а именно к передаче генетического материала от родителей к потомкам.

Благодаря трудам Уолтера Саттона стало известно количество хромосом в клетках. Помимо этого, ученый утверждал, что именно эти крохотные частицы являются носителями единиц наследственности. Так же Саттон выяснил, что хромосомы состоят из генов.

В то же время велись аналогичные работы и Теодором Бовери. Важно заметить, что оба ученых изучили данный вопрос и пришли к одному и тому же выводу. Они изучили и сформулировали основные положения роли хромосом.

Клетки

После открытия и описания хромосом в середине девятнадцатого века, ученые начали интересоваться их строением. Стало понятно, что эти тельца находятся абсолютно в любой клетке, независимо от того прокариотическая или эукариотическая клетка перед нами.

В изучении строения помогли микроскопы. Ученым удалось установить несколько фактов:

  • хромосомы - это нитевидные тельца;
  • их можно наблюдать только в определенные фазы цикла;
  • если проводить изучение в интерфазе, то можно заметить, что ядро состоит из хроматина;
  • во время других периодов можно выделить хромосомы, состоящие из одной или двух хроматид;
  • наилучшее время изучение - митоз или мейоз (все дело в том, что в процессе деления клетки эти тельца лучше заметны);
  • у эукариот наиболее часто встречаются крупные хромосомы, имеющие линейное строение;
  • очень часто в клетках есть несколько типов хромосом.

Формы

Мы разобрались с вопросом - что такое хромосома в биологии, но ничего не сказали о возможных разновидностях. Предлагаем заполнить этот пробел немедленно.

Итак, всего принято выделять четыре формы:

  • метацентрические (в том случае, если центромера посередине);
  • субметацентрические (сдвиг центромеры к одному из концов);
  • акроцентрические, другое название - палочковидные (в том случае, если центромера расположена на каком-либо конце хромосомы);
  • телоцентрические (их еще принято называть точковыми, так как очень тяжело разглядеть форму из-за небольшого размера).

Функции

Хромосома - это надмолекулярный уровень организации генетического материала. Основной компонент - ДНК. Она обладает рядом важных функций:

  • хранение генетического материала;
  • его передача;
  • его реализацию.

Генетический материал представлен в виде генов. Важно заметить, что их в одной хромосоме множество (от нескольких сотен, до тысяч) генов, она имеет следующие особенности:

  • хромосома представляет только одну группу сцепления;
  • упорядочивает расположение генов;
  • обеспечивает совместное наследование всех генов.

Каждая отдельно взятая клетка имеет диплоидный набор хромосом. Биология - это очень увлекательный предмет, который при правильном преподавании заинтересует множество учеников. Теперь более подробно рассмотрим ДНК и РНК.

ДНК и РНК

Из чего же состоят хромосомы? Если речь идет об эукариотах, то эти частички в клетках образованы при помощи хроматина. В состав последнего входят:

  • дезоксирибонуклеиновая кислота (сокращенно - ДНК);
  • рибонуклеиновая кислота (сокращение - РНК);
  • белки.

Все, что перечислено выше, - это высокомолекулярные органические вещества. Что касается расположения, то ДНК можно обнаружить в ядре у эукариотов, а РНК - в цитоплазме.

Гены и хромосомы

Биология довольно подробно рассматривает вопрос генетики, начиная еще со школьной скамьи. Давайте освежать память, что же такое все-таки ген? Это мельчайшая единица всего генетического материала. Ген - это участок ДНК или РНК. Второй случай встречается у вирусов. Именно он кодирует развитие некоторого признака.

Важно заметить и то, что ген отвечает только за какой-либо один признак, функционально он неделим. Теперь перейдем к рентгеноструктурному анализу ДНК. Итак, последняя образует двойную спираль. Ее цепи состоят из нуклеотидов. Последние - это углевод дезоксирибоза, фосфатная группа и азотистое основание. А вот здесь немного интереснее, азотистых оснований может быть несколько видов:

  • аденин;
  • гуанин;
  • тимин;
  • цитозин.

Хромосомный набор

От числа хромосом и их особенностей зависит вид. Для примера возьмем:

  • мухи-дрозофилы (по восемь хромосом);
  • приматы (по сорок восемь хромосом);
  • люди (по сорок шесть хромосом).

И это число является постоянным для конкретного вида организма. Все эукариотические клетки имеют диплоидный набор хромосом (2n), а гаплоидный - это его половина (то есть n). Помимо этого, пара хромосом всегда является гомологичной. Что значит гомологичные хромосомы в биологии? Это те, которые полностью идентичны (по форме, строению, местоположению центромер и так далее).

Очень важно заметить и то, что диплоидный набор присущ соматическим клеткам, а гаплоидный - половым.

Рассматривая наш организм на клеточном уровне, обязательно наталкиваешься на его структурную единицу - хромосому. Именно в ней содержатся гены. С греческого это понятие дословно можно перевести как «окраска тела». Почему такое странное название? Дело в том, что во время деления клетки структурные единицы могут окрашиваться при взаимодействии с натуральными красителями. Хромосома является ценным носителем информации. Поэтому когда у человека формируется неправильное количество хромосом, это говорит о патологическом процессе.

Вконтакте

Норма для здорового человека

Если верить последней статистике , 1% новорожденных сегодня рождается с отклонениями на физиологическом уровне, когда появляется недостаточное количество хромосом. Эта проблема уже становится глобальной, чем вызывает сильную озабоченность у врачей. У здорового человека (мужчина или женщина) насчитывается 46 хромосом, то есть 23 пары. Интересен тот факт, что до 1996 года у ученых не было сомнений, что пар структурных единиц не 23, а 24. Ошибка была допущена Теофилусом Пейнтером, известным в своем круге ученым. Ее нашли и исправили два других светила - Альберт Леван и Джо-Хин Тьо.

Все хромосомы имеют одинаковые морфологические признаки, но половые и соматические клетки обладают разным набором структурных единиц. В чем же состоит это различие?

Когда происходит деление клеток (то есть их количество начинает удваиваться), наблюдаются изменения хромосом на морфологическом уровне. Но, несмотря на то что в нашем организме происходят столь сложные процессы, количество хромосом у человека все равно остается одинаковым - 46. От того, сколько пар хромосом у человека должно быть, зависит его интеллектуальное развитие и общее здоровье. Именно поэтому для врачей очень важно обращать внимание на этот вопрос еще в процессе планирования беременности. Часто гинеколог рекомендует молодым парам обратиться к генетику, который проведет некоторые важные клинические исследования.

При зачатии одну из единиц в паре человек получает от биологической матери, а вторую - от биологического отца. А вот от 23-й пары зависит пол будущего малыша . Во время изучения кариотипа человека важно пояснить, что хромосомный набор здоровых людей состоит из 22 аутосом, а также одной мужской и одной женской хромосомы (так называемые половые). Кариотип человека можно без особых проблем определить с помощью простого изучения совокупности признаков этих единицы в одной клетке. Если будет найдено какое-либо нарушение в кариотипе, человека ждут большие неприятности со здоровьем.

Проблем на уровне генов может быть несколько. И все они рассматриваются отдельно, ведь имеют разную клиническую картину. Ниже представлены только те патологии, которые современная медицина может успешно вылечить после того, как родился больной ребенок:

Эти показания считаются отклонением от нормы и их можно определить еще во время внутриутробного развития. Если существует возможного того , что ребенок родится с серьезными проблемами, врачи часто рекомендуют беременной женщине сделать аборт. В противном случае женщина обрекает себя на жизнь с инвалидом, которому будет необходимо дополнительное воспитание.

Нарушения в наборах хромосом

Иногда количество пар не соответствует стандарту. Проблему во внутриутробном развитии может заметить только генетик, если будущая мама добровольно пройдет исследование. Если количество нарушено, то выделяют такие заболевания:

  1. Синдром Клайнфельтера.
  2. Болезнь Дауна.
  3. Синдром Шерешевского-Тернера.

Консервативных методов для восполнения недостающего генетического ряда не существует на сегодняшний день. То есть подобный диагноз считается неизлечимым. Если проблема была диагностирована во время беременности, лучше всего ее прервать. В противном случае появляется больной ребенок с возможными внешними уродствами.

Болезнь Дауна

Впервые это заболевание было диагностировано еще в XVII столетии. В то время определение количества хромосом у здорового человека было крайне проблематичным занятием. Поэтому количество больных новорожденных было по-настоящему пугающим. На 1000 младенцев двое рождались с синдромом Дауна. Через некоторое время болезнь была изучена на генетическом уровне, что позволило определить, как меняется хромосомный набор.

При синдроме Дауна к 21 паре прикрепляется еще одна. То есть, общее количество составляет не 46, а 47 хромосом. Патология формируется спонтанно, а ее причиной может быть сахарный диабет, пожилой возраст родителей, повышенная доза радиации, наличие некоторых хронических заболеваний.

Внешне такой ребенок отличается от здоровых сверстников. У него узкий и широкий лоб, объемный язык, большие уши, сразу бросается в глаза умственная отсталость. Также у пациента диагностируются другие проблемы со здоровьем, которые затрагивают многие внутренние системы и органы.

По большому счету хромосомный ряд будущего малыша сильно зависит от генома его матери. Именно поэтому перед началом планирования беременности необходимо пройти полноценное клиническое обследование. Оно позволит определить скрытые проблемы . Если врачи не обнаружат противопоказаний, можно думать о зачатии ребенка.

Синдром Патау

При этом нарушении наблюдается трисомия в тринадцатой паре структурных единиц. Такое заболевание встречается намного реже, чем синдром Дауна. Оно возникает, если присоединяется лишняя структурная единица или нарушается структура хромосом и их перераспределение.

Существует три основных симптома , по которым диагностируют данную патологию:

  1. Уменьшенные размеры глаз или микрофтальм.
  2. Увеличенное количество пальцев (полидактилия).
  3. Расщелина неба и губы.

При таком заболевании около 70% младенцев вскоре после рождения (до трех лет) умирают. Часто у детей с синдромом Патау диагностируют пороки сердца, а также головного мозга, проблемы со многими внутренними органами.

Синдром Эдвардса

Эта патология характеризуется наличием трех хромосом в восемнадцатой паре. Вскоре после рождения большая часть младенцев умирает. Они рождаются с ярко выраженной гипотрофией (не могут набрать вес из-за проблем с пищеварением). У них низко расположенные уши, широко поставленные глаза. Часто диагностируются пороки сердца.

Чтобы не допустить развития патологии, рекомендовано всем родителям, которые решают зачать ребенка после 35 лет, пройти специальные обследования. Также большая вероятность развития заболеваний у тех, чьи родители имели проблемы со щитовидной железой.

Хромосомы - самовоспроизводящиеся структуры клеточного ядра. Как у прокариотических, так и у эукариотических организмов гены располагаются группами на отдельных молекулах ДНК, которые при участии белков и других макромолекул клеток организуются в хромосомы. Зрелые клетки зародышевой линии (гаметы - яйцеклетки, спермии) многоклеточных организмов содержат по одному (гаплоидному) набору хромосом организма.

После того как к полюсам отойдут полные наборы хроматид , их называют хромосомами (chromosomes). Хромосомы - это структуры в ядре клеток эукариот , которые пространственно и функционально организовывают ДНК в геноме индивидуумов.

Каждая молекула ДНК упакована в отдельную хромосому, а вся генетическая информация, хранящаяся в хромосомах одного организма, составляет его геном. Следует отметить, что хромосомы в клетке меняют свою структуру и активность в соответствии со стадией клеточного цикла: в митозе они более конденсированы и транскрипционно инактивированы; в интерфазе , наоборот, они активны в отношении синтеза РНК и менее конденсированы.

Для формирования функциональной хромосомы молекула ДНК должна быть способна не только направлять синтез РНК, но и, размножаясь, передаваться от одного поколения клеток к следующему. Для этого необходимо три типа специализированных нуклеотидных последовательностей (они были идентифицированы на хромосомах дрожжей Saccharomyces cerevisiae).

1. Для нормальной репликации молекуле ДНК необходима специфическая последовательность, действующая в качестве точки начала репликации (DNA replication origin).

2. Второй необходимый элемент - центромера - удерживает две копии дуплицированной хромосомы вместе и прикрепляет любую молекулу ДНК, содержащую данную последовательность, через белковый комплекс - кинетохор к митотическому веретену (в процессе клеточного деления так, что каждая дочерняя клетка получает одну копию.

3. Третий необходимый элемент, в котором нуждается каждая линейная хромосома, - это теломера . Теломера представляет собой специальную последовательность на конце каждой хромосомы. Эта простая повторяющаяся последовательность периодически продлевается специальным ферментом, теломеразой, и таким образом компенсируется утрата нескольких нуклеотидов ДНК теломер, происходящая в каждом цикле репликации. В результате линейная хромосома оказывается полностью реплицированной. Все описанные выше элементы относительно короткие (обычно менее 1 000 пар оснований каждый). Видимо, аналогичные три типа последовательностей должны работать и в человеческих хромосомах, но к настоящему времени хорошо охарактеризованы только теломерные последовательности хромосом человека.

У диплоидных (полиплоидных) организмов, клетки которых содержат по одному (несколько) набору хромосом каждого из родителей, одинаковые хромосомы получили название гомологичных хромосом, или гомологов. Гомологичными являются и одинаковые хромосомы разных организмов одного биологического вида.

Гены и некодирующие последовательности нуклеотидов, заключенные в хромосомах ядер клеток, представляют большую часть генома организма.

Кроме того, геном организма формируют и внехромосомные генетические элементы, которые во время митотического цикла воспроизводятся независимо от хромосом ядер. Так, в митохондриях грибов и млекопитающих содержится около 1% всей ДНК, у почкующихся дрожжей Sacharomyces cerevisiae - до 20% ДНК клетки. ДНК пластид растений (хлоропластов и митохондрий) составляет от 1 до 10% суммарного количества ДНК.

Гены, входящие в состав отдельных хромосом, находятся в одной молекуле ДНК и образуют группу сцепления, в отсутствие рекомбинации вместе передаются от родительских клеток к дочерним.

Остаются до конца не понятыми физиологическое значение распределения генов по отдельным хромосомам и природа факторов, определяющих число хромосом в геноме эукариот. Например, невозможно объяснить эволюционные механизмы появления большого числа хромосом у конкретных организмов только ограничениями, накладываемыми на максимальный размер молекул ДНК, входящих в состав этих хромосом. Так, геном американской амфибии Amphiuma содержит в ~30 раз больше ДНК, чем геном человека, и вся ДНК заключена только в 28 хромосомах, что вполне сопоставимо с кариотипом человека (46 хромосом). Однако даже самая маленькая из этих хромосом больше самых крупных хромосом человека. Остаются неизвестными факторы, ограничивающие верхний предел числа хромосом у эукариот. Например, у бабочки Lysandra nivescens диплоидный набор составляет 380-382 хромосомы, и нет основания считать, что это значение является максимально возможным.

В норме число хромосом у человека равно 46. Примеры: 46, XX, здоровая женщина; 46, XY, здоровый мужчина.

Наследственность и изменчивость в живой природе существуют благодаря хромосомам, генам, (ДНК). Хранится и передается в виде цепочки нуклеотидов в составе ДНК. Какая роль в этом явлении принадлежит генам? Что такое хромосома с точки зрения передачи наследственных признаков? Ответы на подобные вопросы позволяют разобраться в принципах кодирования и генетическом разнообразии на нашей планете. Во многом оно зависит от того, сколько хромосом входит в набор, от рекомбинации этих структур.

Из истории открытия «частиц наследственности»

Изучая под микроскопом клетки растений и животных, многие ботаники и зоологи еще в середине XIX века обратили внимание на тончайшие нити и мельчайшие кольцевидные структуры в ядре. Чаще других первооткрывателем хромосом называют немецкого анатома Вальтера Флемминга. Именно он применил анилиновые красители для обработки ядерных структур. Обнаруженное вещество Флемминг назвал "хроматином" за его способность к окрашиванию. Термин «хромосомы» в 1888 году ввел в научный оборот Генрих Вальдейер.

Одновременно с Флеммингом искал ответ на вопрос о том, что такое хромосома, бельгиец Эдуард ван Бенеден. Чуть раньше немецкие биологи Теодор Бовери и Эдуард Страсбургер провели серию экспериментов, доказывающих индивидуальность хромосом, постоянство их числа у разных видов живых организмов.

Предпосылки хромосомной теории наследственности

Американский исследователь Уолтер Саттон выяснил, сколько хромосом содержится в клеточном ядре. Ученый считал эти структуры носителями единиц наследственности, признаков организма. Саттон обнаружил, что хромосомы состоят из генов, с помощью которых потомкам от родителей передаются свойства и функции. Генетик в своих публикациях дал описания хромосомных пар, их движения в процессе деления клеточного ядра.

Независимо от американского коллеги, работы в том же направлении вел Теодор Бовери. Оба исследователя в своих трудах изучали вопросы передачи наследственных признаков, сформулировали основные положения о роли хромосом (1902-1903). Дальнейшая разработка теории Бовери-Саттона происходила в лаборатории нобелевского лауреата Томаса Моргана. Выдающийся американский биолог и его помощники установили ряд закономерностей размещения генов в хромосоме, разработали цитологическую базу, объясняющую механизм законов Грегора Менделя — отца-основателя генетики.

Хромосомы в клетке

Исследование строения хромосом началось после их открытия и описания в XIX веке. Эти тельца и нити содержатся в прокариотических организмах (безъядерных) и эукариотических клетках (в ядрах). Изучение под микроскопом позволило установить, что такое хромосома с морфологической точки зрения. Это подвижное нитевидное тельце, которое различимо в определенные фазы клеточного цикла. В интерфазе весь объем ядра занимает хроматин. В другие периоды различимы хромосомы в виде одной или двух хроматид.

Лучше видны эти образования во время клеточных делений — митоза или мейоза. В чаще можно наблюдать крупные хромосомы линейного строения. У прокариотов они меньше, хотя есть исключения. Клетки зачастую включают более одного типа хромосом, например свои собственные небольшие «частицы наследственности» есть в митохондриях и хлоропластах.

Формы хромосом

Каждая хромосома обладает индивидуальным строением, отличается от других особенностями окрашивания. При изучении морфологии важно определить положение центромеры, длину и размещение плеч относительно перетяжки. В набор хромосом обычно входят следующие формы:

  • метацентрические, или равноплечие, для которых характерно срединное расположение центромеры;
  • субметацентрические, или неравноплечие (перетяжка смещена в сторону одного из теломеров);
  • акроцентрические, или палочковидные, в них центромера находится практически на конце хромосомы;
  • точковые с трудно поддающейся определению формой.

Функции хромосом

Хромосомы состоят из генов — функциональных единиц наследственности. Теломеры — концы плеч хромосомы. Эти специализированные элементы служат для защиты от повреждения, препятствуют слипанию фрагментов. Центромера выполняет свои задачи при удвоении хромосом. На ней есть кинетохор, именно к нему крепятся структуры веретена деления. Каждая пара хромосом индивидуальна по месту расположения центромеры. Нити веретена деления работают таким образом, что в дочерние клетки отходит по одной хромосоме, а не обе. Равномерное удвоение в процессе деления обеспечивают точки начала репликации. Дупликация каждой хромосомы начинается одновременно в нескольких таких точках, что заметно ускоряет весь процесс деления.

Роль ДНК и РНК

Выяснить, что такое хромосома, какую функцию выполняет эта ядерная структура, удалось после изучения ее биохимического состава и свойств. В эукариотических клетках ядерные хромосомы образованы конденсированным веществом — хроматином. По данным анализа, в его состав входят высокомолекулярные органические вещества:

Нуклеиновые кислоты принимают самое непосредственное участие в биосинтезе аминокислот и белков, обеспечивают передачу наследственных признаков из поколения в поколение. ДНК содержится в ядре эукариотической клетки, РНК сосредоточена в цитоплазме.

Гены

Рентгеноструктурный анализ показал, что ДНК образует двойную спираль, цепи которой состоят из нуклеотидов. Они представляют собой углевод дезоксирибозу, фосфатную группу и одно из четырех азотистых оснований:


Участки спиралевидных дезоксирибонуклеопротеидных нитей — это гены, несущие закодированную информацию о последовательности аминокислот в белках или РНК. При размножении наследственные признаки от родителей потомству передаются в виде аллелей генов. Они определяют функционирование, рост и развитие конкретного организма. По мнению ряда исследователей, те участки ДНК, что не кодируют полипептиды, выполняют регулирующие функции. Геном человека может насчитывать до 30 тыс. генов.

Набор хромосом

Общее число хромосом, их особенности — характерный признак вида. У мухи-дрозофилы их количество — 8, у приматов — 48, у человека — 46. Это число является постоянным для клеток организмов, которые относятся к одному виду. Для всех эукариотов существует понятие «диплоидные хромосомы». Это полный набор, или 2n, в отличие от гаплоидного — половинного количества (n).

Хромосомы в составе одной пары гомологичны, одинаковы по форме, строению, местоположению центромер и других элементов. Гомологи имеют свои характерные особенности, которые их отличают от других хромосом в наборе. Окрашивание основными красителями позволяет рассмотреть, изучить отличительные черты каждой пары. присутствует в соматических же — в половых (так называемых гаметах). У млекопитающих и других живых организмов с гетерогаметным мужским полом формируются два вида половых хромосом: Х-хромосома и Y. Самцы обладают набором XY, самки — XX.

Хромосомный набор человека

Клетки организма человека содержат 46 хромосом. Все они объединяются в 23 пары, составляющие набор. Есть два типа хромосом: аутосомы и половые. Первые образуют 22 пары — общие для женщин и мужчин. От них отличается 23-я пара — половые хромосомы, которые в клетках мужского организма являются негомологичными.

Генетические черты связаны с половой принадлежностью. Для их передачи служат Y и Х-хромосома у мужчин, две X у женщин. Аутосомы содержат оставшуюся часть информации о наследственных признаках. Существуют методики, позволяющие индивидуализировать все 23 пары. Они хорошо различимы на рисунках, когда окрашены в определенный цвет. Заметно, что 22-я хромосома в геноме человека - самая маленькая. Ее ДНК в растянутом состоянии имеет длину 1,5 см и насчитывает 48 млн пар азотистых оснований. Специальные белки гистоны из состава хроматина выполняют сжатие, после чего нить занимает в тысячи раз меньше места в ядре клетки. Под электронным микроскопом гистоны в интерфазном ядре напоминают бусы, нанизанные на нить ДНК.

Генетические заболевания

Существует более 3 тыс. наследственных болезней разного типа, обусловленных повреждениями и нарушениями в хромосомах. К их числу относится синдром Дауна. Для ребенка с таким генетическим заболеванием характерно отставание в умственном и физическом развитии. При муковисцидозе происходит сбой в функциях желез внешней секреции. Нарушение ведет к проблемам с потоотделением, выделению и накоплению слизи в организме. Она затрудняет работу легких, может привести к удушью и летальному исходу.

Нарушение цветового зрения — дальтонизм — невосприимчивость к некоторым частям цветового спектра. Гемофилия приводит к ослаблению свертываемости крови. Непереносимость лактозы не позволяет организму человека усваивать молочный сахар. В кабинетах планирования семьи можно узнать о предрасположенности к тому или иному генетическому заболеванию. В крупных медицинских центрах есть возможность пройти соответствующее обследование и лечение.

Генотерапия — направление современной медицины, выяснение генетической причины наследственных заболеваний и ее устранение. С помощью новейших методов в патологические клетки вместо нарушенных вводят нормальные гены. В таком случае врачи избавляют больного не от симптомов, а от причин, вызвавших заболевание. Проводится только коррекция соматических клеток, методы генной терапии пока не применяются массово по отношению к половым клеткам.