Мембранные белки. Мембранные белки, их структура свойства и особенности Виды мембранных белков по выполняемым функциям

1. ТРАНСПОРТ ГИДРОФИЛЬНЫХ МОЛЕКУЛ, и, в частности, заряженных частиц. Например, транспорт ионов натрия и калия осуществляется K,Na-насосом.

2. ФЕРМЕНТАТИВНАЯ РОЛЬ.

Ферменты, заключенные в мембрану, обладают рядом особенностей каталитических свойств. У этих ферментов особая чувствительность к факторам окружающей среды.

    РЕЦЕПТОРНАЯ РОЛЬ. Взаимодействие с гормонами, медиаторами осуществляется мембранными белками-гликопротеинами. Самостоятельно углеводный компонент не участвует в построении мембраны, но липиды и белки содержат углеводы.

Роль углеводных компонентов мембран

а) Участвуют в рецепции.

б) Обеспечивают взаимодействие клеток друг с другом.

в) Некоторые углеводные компоненты обеспечивают антигенную специфичность клеток. Например, эритроциты разных групп крови отличаются друг от друга по составу углеводных компонентов.

Мембраны асимметричны. 2 монослоя отличаются друг от друга по своему составу. Например, гликолипиды плазматической мембраны всегда находятся в наружном монослое. Асимметрия характерна и для белковых компонентов.

Аденилатциклаза. Ее активный центр находится на внутренней части мембраны. Белки-рецепторы свой углеводный компонент содержат с внешней стороны мембраны.

Важнейшим компонентом плазматических мембран является холестерин.

Холестерин взаимодействует с гидрофобными хвостами полярных молекул и ограничивает скорость диффузии липидов. Поэтому холестерин называют стабилизатором биологических мембран. Компоненты мембран не только движутся в пространстве, но и постоянно обновляются. Их место занимают новые молекулы.

В учебную программу входит только обмен ГФЛ и холестерина. Липоиды синтезируются на мембранах эндоплазматического ретикулума. Наблюдается постоянное передвижение липоидов от мембран ЭПС к другим мембранам.

СИНТЕЗ ХОЛЕСТЕРИНА

Протекает в основном в печени на мембранах эндоплазматического ретикулума гепатоцитов. Этот холестерин - эндогенный. Происходит постоянный транспорт холестерина из печени в ткани. Для построения мембран используется также пищевой (экзогенный) холестерин. Ключевой фермент биосинтеза холестерина - ГМГ-редуктаза (бета-гидрокси, бета-метил, глутарил-КоА редуктаза). Этот фермент ингибируется по принципу отрицательной обратной связи конечным продуктом - холестерином.

ТРАНСПОРТ ХОЛЕСТЕРИНА.

Пищевой холестерин транспортируется хиломикронами и попадает в печень. Поэтому печень является для тканей источником и пищевого холестерина (попавшего туда в составе хиломикронов), и эндогенного холестерина.

В печени синтезируются и затем попадают в кровь ЛОНП - липопротеины очень низкой плотности (состоят на 75% из холестерина), а также ЛНП - липопротеины низкой плотности(в их составе есть апобелок апоВ 100 .

Почти во всех клетках имеются рецепторы для апоВ 100 . Поэтому ЛНП фиксируются на поверхности клеток. При этом наблюдается переход холестерина в клеточные мембраны. Поэтому ЛНП способны снабжать холестерином клетки тканей.

Помимо этого, происходит и освобождение холестерина из тканей и транспорт его в печень. Транспортируют холестерин из тканей в печень липопротеины высокой плотности (ЛВП). Они содержат очень мало липидов и много белка. Синтез ЛВП протекает в печени. Частицы ЛВП имеют форму диска, и в их составе находятся апобелки апоА, апоС и апоЕ . В кровеносном русле к ЛНП присоединяется белок-фермент лецитинхолестеринацилтрансфераза (ЛХАТ) (смотрите рисунок).

АпоС и апоЕ могут переходить от ЛВП на хиломикроны или ЛОНП. Поэтому ЛВП являются донорами апоЕ и апоС. АпоА является активатором ЛХАТ.

ЛХАТ катализирует следующую реакцию:


Это реакция переноса жирной кислоты из положения R 2 на холестерин.

Реакция является очень важной, потому что образующийся эфир холестерина является очень гидрофобным веществом и сразу переходит в ядро ЛВП - так при контакте с мембранами клеток ЛВП удаляют из них избыток холестерина. Дальше ЛВП идут в печень, там разрушаются, и избыток холестерина удаляется из организма.

Нарушение соотношения между количеством ЛНП, ЛОНП и ЛВП может вызывать задержку холестерина в тканях. Это приводит к атеросклерозу. Поэтому ЛНП называют атерогенными липопротеинами, а ЛВП - антиатерогенными липопротеинами. При наследственном дефиците ЛВП наблюдаются ранние формы атеросклероза.

Классификация

Мембранные белки могут быть классифицированы по топологическому или биохимическому принципу. Топологическая классификация основана на локализации белка по отношению к липидному бислою. Биохимическая классификация основана на прочности взаимодействия белка с мембраной.

Различные категории политопических белков. Связывание с мембраной за счёт (1) единичной трансмембранной альфа-спирали, (2) множественных трансмембранных альфа-спиралей, (3) бета-складчатой структуры.

Различные категории интегральных монотопических белков. Связывание с мембраной за счёт (1) амфипатической альфа-спирали, параллельной плоскости мембраны, (2) гидрофобной петли, (3) ковалентно соединённого жирнокислотного остатка, (4) электростатического взаимодействия (прямого или кальций -опосредованного).

Топологическая классификация

По отношению к мембране мембранные белки делятся на поли- и монотопические.

  • Политопические, или трансмембранные, белки полностью пронизывают мембрану и, таким образом, взаимодействуют с обеими сторонами липидного бислоя. Как правило, трансмембранный фрагмент белка является альфа-спиралью , состоящей из гидрофобных аминокислот (возможно от 1 до 20 таких фрагментов). Только у бактерий , а также в митохондриях и хлоропластах трансмембранные фрагменты могут быть организованы как бета-складчатая структура (от 8 до 22 поворотов полипептидной цепи).
  • Интегральные монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную сторону.

Биохимическая классификация

По биохимической классификации мембранные белки делятся на интегральные и периферические .

  • Интегральные мембранные белки прочно встроены в мембрану и могут быть извлечены из липидного окружения только с помощью детергентов или неполярных растворителей. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.
  • Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил. Таким образом, в отличие от интегральных белков они диссоциируют от мембраны при обработке соответствующим водным раствором (например, с низким или высоким pH, с высокой концентрацией соли или под действием хаотропного агента). Эта диссоциация не требует разрушения мембраны.

Мембранные белки могут быть встроены в мембрану за счёт жирнокислотных или пренильных остатков либо гликозилфосфатидилинозитола , присоединённых к белку в процессе их посттрансляционной модификации .

Ссылки


Wikimedia Foundation . 2010 .

Как правило, именно белки ответственны за функциональную активность мембран.

К таким белкам относятся разнообразные ферменты, транспортные белки, рецепторы, каналы, белки, образующие поры (аквапорины), то есть разнообразные белковые структуры, которые обеспечивают уникальность функций каждой мембраны.

Мембранные белки по биологической роли можно разделить на три группы:

I – белки-ферменты, обладающие каталитической активностью,

II – рецепторные белки, специфически связывающие те или иные вещества,

III – структурные белки.

Белки-ферменты

Наиболее распространены среди всех мембранных белков. В их число входят как интегральные (мембранные АТФазы), так и периферические (ацетилхолинэстераза, кислая и щелочная фосфатазы, РНКаза) белки.

Ферменты – большие молекулы, в то время как размеры молекул веществ (субстратов), вступающих в ферментативные реакции, обычно в тысячи раз меньше. Фермент взаимодействует с субстратом небольшим участком своей поверхности – активным центром. Специфичность фермента всегда определяется тем, насколько поверхность его активного центра соответствует поверхности субстрата. Этот принцип структурного соответствия повсеместно используется и в работе белков клеточных мембран. В дополнение к этому надо учесть, что конформация внедряющихся в мембрану белков зависит от мембранного бислоя, так что и их ферментативная активность контролируется мембранными липидами. Этот контроль может реализоваться благодаря как влиянию на сродство к субстратам или на их доступность, так и воздействию на длительность жизни (прочность) белковых ассоциатов мембранных ферментов, образующихся в клеточной мембране.

Ферменты входят в состав как плазматических, так и внутриклеточных мембран. Например, на наружной мембране эпителиальных клеток, выстилающих пищеварительные органы, имеются ферменты, осуществляющие расщепление питательных веществ еще до того, как они попадут внутрь клетки (этот процесс, открытый отечественным физиологом А.М. Уголевым носит название «мембранное пищеварение»). Наружная мембрана клеток печени содержит более 20 различных ферментов.

Мембранные ферменты нуждаются в контакте с окружающими их липидами. Когда их извлекают из липидного окружения (например, когда липиды экстрагируются из мембраны неполярными растворителями), работа мембранных ферментов нарушается (меняются особенности кинетики или характера влияния посторонних веществ или же вовсе прекращается). Активность таких мембранных ферментов удается частично восстановить, если к ним добавить липидные мицеллы.

Анализ природы липидов, активирующих мембранные ферменты, демонстрирует отсутствие строгой специфичности - определяющим является гидрофильно-липофильный коэффициент липидной смеси. В ряде случаев активировать делипидированный фермент удается даже детергентом. Однако такой реактивированный фермент теряет способность воспринимать регулирующие сигналы извне, которые управляли его работой в «живой» мембране.

Активирующее действие липидов на мембранные ферменты может быть, по меньшей мере, двояким. Во-первых, в присутствии липидов может меняться форма молекулы мембранного фермента, так что его активный центр становится доступным для субстрата. Во-вторых, липиды могут играть роль организатора ансамбля или конвейера, состоящего из многих ферментов.

Молекулы мембранных ферментов содержат большие неполярные гидрофобные участки. Поэтому в водной среде они агрегируют, из-за чего большая часть активных центров маскируется. В присутствии липидов мембранные ферменты организуются в ансамбли, окруженные аннулярными липидными молекулами, и их ферментативная активность может проявиться в полной мере. Для нормальной работы мембранных ферментов существенно, чтобы окружающие их липиды находились в жидком агрегатном состоянии.

Рецепторные белки

Рецепторными называют белки, специфически связывающие те или иные низкомолекулярные вещества. При связывании специфических лигандов рецепторные белки обратимо меняют свою форму. Эти изменения запускают внутри клетки ответные химические реакции. Таким способом клетка воспринимает различные сигналы, поступающие из внешней среды, и отвечает на них .

Белки-рецепторы и белки, определяющие иммунную реакцию клетки, – антигены, также могут быть как интегральными, так и периферическими компонентами мембраны.

Часто рецепторы входят в состав более сложных мембранных комплексов, содержащих белки-исполнители. Например, холинорецептор воспринимает сигнал от нейромедиатора и передает его на белок-каналообразователь. Эта реакция открывает проницаемость мембраны для ионов натрия и калия и формирует возбуждающий потенциал.

Липидам в составе мембран отводят, в первую очередь, структурные свойства - они создают бислой, или матрикс, в котором размещаются активные компоненты мембраны - белки. Именно белки придают разнообразным мембранам уникальность и обеспечивают специфические свойства. Многочисленные мембранные белки выполняют следующие основные функции: обусловливают перенос веществ через мембраны (транспортные функции), осуществляют катализ, обеспечивают процессы фото- и окислительного фосфорилирования, репликацию ДНК, трансляцию и модификацию белков, рецепцию сигналов и передачу нервного импульса и др.

Принято делить мембранные белки на 2 группы: интегральные (внутренние) и периферические (наружные). Критерием такого разделения служит степень прочности связывания белка с мембраной и, соответственно, степень жесткости обработки, необходимой для извлечения белка из мембраны. Так, периферические белки могут высвобождаться в раствор уже при промывке мембран буферными смесями с низкой ионной силой, низкими значениями рН в присутствии хелатирующих веществ, например этилендиаминотетраацетата (ЭДТА), связывающих двухвалентные катионы. Периферические белки выделяются из мембран при таких мягких условиях, поскольку связаны с головками липидов или с другими белками мембраны при помощи слабых электростатических взаимодействий, либо с помощью гидро-фобных взаимодействий - с хвостами липидов. Наоборот, интегральные белки представляют собой амфифильные молекулы, имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны, поэтому для их извлечения требуется разрушить бислой. Для этих целей наиболее часто используют детергенты или органические растворители. Способы прикрепления белков к мембране довольно разнообразны (рис. 4.8).

Транспортные белки . Липидный бислой является непроницаемым барьером для большинства водорастворимых молекул и ионов, и их перенос через биомембраны зависит от деятельности транспортных белков. Можно выделить два основных типа этих белков: каналы (поры) и переносчики . Каналы представляют собой туннели, пересекающие мембрану, в которых места связывания транспортируемых веществ доступны на обеих поверхностях мембраны одновременно. Каналы в процессе транспорта веществ не претерпевают каких-либо конформационных изменений, их конформация меняется лишь при открывании и закрывании. Переносчики, наоборот, в процессе переноса веществ через мембрану изменяют свою конформацию. Причем в каждый конкретный момент времени место связывания переносимого вещества в переносчике доступно только на одной поверхности мембраны.

Каналы, в свою очередь, можно разделить на две основные группы: потенциалзависимые и регулируемые химически. Примером потенциалзависимого канала является Na + -канал, его работа регулируется изменением напряжения электрического поля. Иными словами, эти каналы открываются и закрываются в ответ на изменение трансмембранного потенциала . Химически регулируемые каналы

открываются и закрываются в ответ на связывание специфических химических агентов. Например, никотиновый ацетилхолиновый рецептор при связывании с ним нейромедиатора переходит в открытую конформацию и пропускает одновалентные катионы (подрадел 4.7 данной главы). Термины «пора» и «канал» обычно взаимозаменяемы, но под порой чаще понимают неселективные структуры, различающие вещества главным образом по размеру и пропускающие все достаточно малые молекулы. Под каналами чаще понимают ионные каналы. Скорость транспорта через открытый канал достигает 10 6 - 10 8 ионов в секунду.

Переносчики также можно разделить на 2 группы: пассивные и активные. С помощью пассивных переносчиков через мембрану осуществляется транспорт одного типа веществ. Пассивные переносчики задействованы в облегченной диффузии и лишь увеличивают поток вещества, осуществляемый по электрохимическому градиенту (например, перенос глюкозы через мембраны эритроцитов). Активные переносчики транспортируют вещества через мембрану с затратами энергии. Эти транспортные белки накапливают вещества на одной из сторон мембраны, перенося их против электрохимического градиента. Скорость транспорта с помощью переносчиков в очень сильной степени зависит от их типа и колеблется от 30 до 10 5 с -1 . Часто для обозначения отдельных переносчиков используют термины «пермеаза», «транслоказа», которые можно считать синонимами термина «переносчик».

Ферментные функции мембранных белков . В клеточных мембранах функционирует большое количество разнообразных ферментов. Одни из них локализуются в мембране, находя там подходящую среду для превращения гидрофобных соединений, другие благодаря участию мембран располагаются в них в строгой очередности, катализируя последовательные стадии жизненно важных процессов, третьи нуждаются в содействии липидов для стабилизации своей конформации и поддержания активности. В биомембранах обнаружены ферменты - представители всех известных классов. Они могут пронизывать мембрану насквозь, присутствовать в ней в растворенной форме или, являясь периферическими белками, связываться с мембранными поверхностями в ответ на какой-либо сигнал. Можно выделить следующие характерные типы мембранных ферментов:

1) трансмембранные ферменты, катализирующие сопряженные реакции на противоположных сторонах мембраны. Эти ферменты имеют, как правило, несколько активных центров, размещающихся на противоположных сторонах мембраны. Типичными представителями таких ферментов являются компоненты дыхательной цепи или фотосинтетические редокс-центры, катализирующие окислительно-восстановительные процессы, связанные с транспортом электронов и созданием ионных градиентов на мембране;

2) трансмембранные ферменты, участвующие в транспорте веществ. Транспортные белки, сопрягающие перенос вещества с гидролизом АТР, например, обладают каталитической функцией;

3) ферменты, катализирующие превращение связанных с мембраной субстратов. Эти ферменты участвуют в метаболизме мембранных компонентов: фосфолипидов, гликолипидов, стероидов и др.

4) ферменты, участвующие в превращениях водорастворимых субстратов. С помощью мембран, чаще всего в прикрепленном к ним состоянии, ферменты могут концентрироваться в тех областях мембран, где содержание их субстратов наибольшее. Например, ферменты, гидролизующие белки и крахмал, прикрепляются к мембранам микроворсинок кишечника, что способствует увеличению скорости расщепления этих субстратов.

Белки цитоскелета . Цитоскелет представляет собой сложную сеть белковых волокон разного типа и присутствует только в эукариотических клетках. Цитоскелет обеспечивает механическую опору для плазматической мембраны, может определять форму клетки, а также местоположение органелл и их перемещение при митозе. С участием цитоскелета осуществляются также такие важные для клетки процессы, как эндо- и экзоцитоз, фагоцитоз, амебоидное движение. Таким образом, цитоскелет является динамическим каркасом клетки и определяет ее механику.

Цитоскелет формируется из волокон трех типов:

1) микрофиламенты (диаметр ~ 6 нм). Представляют собой нитевидные органеллы - полимеры глобулярного белка актина и других связанных с ним белков;

2) промежуточные филаменты (диаметр 8- 10 нм). Сформированы кератинами и родственными им белками;

3) микротрубочки (диаметр ~ 23 нм) - длинные трубчатые структуры.

Состоят из глобулярного белка тубулина, субъединицы которого формируют полый цилиндр. Длина микротрубочек может достигать нескольких микрометров в цитоплазме клеток и нескольких миллиметров в аксонах нервов.

Перечисленные структуры цитоскелета пронизывают клетку в разных направлениях и тесно связываются с мембраной, прикрепляясь к ней в некоторых точках. Эти участки мембраны играют важную роль в межклеточных контактах, с их помощью клетки могут прикрепляться к субстрату. Они же играют важную роль в трансмембранном распределении липидов и белков в мембранах.

К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Около 25 % всех белков являются мембранными.

Биохимическая классификация

По биохимической классификации мембранные белки делятся наинтегральные и периферические .

  • Интегральные мембранные белки прочно встроены в мембрану и могут быть извлечены из липидного окружения только с помощью детергентовили неполярных растворителей. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.
  • Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил. Таким образом, в отличие от интегральных белков они диссоциируют от мембраны при обработке соответствующим водным раствором (например, с низким или высоким pH, с высокой концентрацией соли или под действием хаотропного агента). Эта диссоциация не требует разрушения мембраны.

Мембранные белки могут быть встроены в мембрану за счёт жирнокислотных или пренильных остатков либогликозилфосфатидилинозитола, присоединённых к белку в процессе их посттрансляционной модификации.

Еще один важный момент - способы прикрепления белков к мембране:

1. Связывание с белками, погруженными в бислой. В качестве примеров можно привести F1-часть Н + - АТРазы, которая связывается с Fo-частью, погруженной в мембрану; можно упомянуть также некоторые белки цитоскелета.

2. Связывание с поверхностью бислоя. Это взаимодействие имеет в первую очередь электростатическую природу (например, основный белок миелина) или гидрофобную (например, поверхностно-активные пептиды и, возможно, фосфолипазы). На поверхности некоторых мембранных белков имеются гидрофобные домены, образующиеся благодаря особенностям вторичной или третичной структуры. Указанные поверхностные взаимодействия могут использоваться как дополнение к другим взаимодействиям, например к трансмембранному заякориванию.

3. Связывание с помощью гидрофобного "якоря"; эта структура обычно выявляется как последовательность неполярных аминокислотных остатков (например, у цитохрома 65). Некоторые мембранные белки используют в качестве якоря ковалентно связанные с ними жирные кислоты или фосфолипиды.

4. Трансмембранные белки. Одни из них пересекают мембрану только один раз (например, гликофорин), другие - несколько раз (например, лактозопермеаза; бактериородопсин).

Мембранные липиды

Мембранные липиды - это амфипатические молекулы, самопроизвольно формирующие бислои. Липиды нерастворимы в воде, однако легко растворяются в органических растворителях. В большинстве животных клеток они составляют около 5О% массы плазматической мембраны. В участке липидного бислоя размером 1 х 1 мкм находится приблизительно 5 х 1ОО тыс. молекул липидов. Следовательно плазматическая мембрана небольшой животной клетки содержит примерно 1О липидных молекул. В клеточной мембране присутствуют липиды трех главных типов:


1) фосфолипиды (наиболее распространенный тип);сложные липиды, содержащие глицерин, жирные кислоты, фосфорную кислоту и азотистое соединение.

Типичная молекула фосфолипида имеет полярную голову и два гидрофобных углеводородных хвоста. Длина хвостов варьирует от 14 до 24 атомов углерода в цепи. Один из хвостов содержит, как правило, одну или более цис-двойных связей (ненасыщенный углеводород), тогда как у другого (насыщенный углеводород) двойных связей нет. Каждая двойная связь вызывает появление изгиба в хвосте. Подобные различия в длине хвостов и насыщенности углеводородных цепей важны, поскольку они влияют на текучесть мембраны.

Амфипатические молекулы, находящиеся в водном окружении, обычно агрегируют, при этом гидрофобные хвосты оказываются спрятанными, а гидрофильные головы остаются в контакте с молекулами воды. Агрегация такого типа осуществляется двумя способами: либо путем образования сферических мицелл с хвостами обращеными внутрь, либо путем формирования бимолекулярных пленок, или бислоев, в которых гидрофобные хвосты располагаются между двумя слоями гидрофильных голов.

Два основных фосфолипида, которые присутствуют в плазме - это фосфатидилхолин (лецитин) и сфингомиелин. Синтез фосфолипидов происходит почти во всех тканях, но главным источником фосфолипидов плазмы служит печень. Тонкий кишечник также поставляет в плазму фосфолипиды, а именно лецитин, в составе хиломикрон. Большая часть фосфолипидов, которые попадают в тонкий кишечник (в том числе и в виде комплексов с желчными кислотами), подвергается предварительному гидролизу панкреатической липазой. Этим обьясняется, почему полиненасыщенный лецитин, добавленный в пищу, влияет на содержание линолеата в фосфолипидах плазмы не больше, чем триглицериды кукурузного масла в эквивалентных количествах.

Фосфолипиды являются неотьемлемым компонентом всех клеточных мембран. Между плазмой и эритроцитами постоянно происходит обмен фосфатидилхолином и сфингомиелином. Оба эти фосфолипида присутствуют в плазме в качестве составных компонентов липопротеинов, где они играют ключевую роль, поддерживая в растворимом состоянии неполярные липиды, такие как триглицериды и эфиры холестерина. Это свойство отражает амфипатический характер молекул фосфолипидов - неполярные цепи жирных кислот способны взаимодействовать с липидным окружением, а полярные головы - с водным окружением (Jackson R.L. ea, 1974).

2) Холестерол. Холестерин - это стерин, содержащий стероидное ядро из четырех колец и гидроксильную группу.

Это соединение обнаруживается в организме как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин - компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина. Кроме того, значительная часть холестерина в кишечной лимфе и в печени тоже этерифицирована.

Холестерин содержится в составе липопротеин ов либо в свободной форме, либо в виде эфиров с длинноцепочечными жирными кислотами. Он синтезируется во многих тканях из ацетил-CoA и выводится из организма желчь ю в виде свободного холестерола или солей желчных кислот. Холестерол является предшественником других стероид ов, а именно кортикостероидов, половых гормонов, желчных кислот и витамина D . Он является соединением, типичным для метаболизма животных, и содержится значительных количествах в продуктах животного происхождения: яичном желтке, мясе, печени и мозге.

Плазматические мембраны эукариот содержат довольно большое количество холестерола - приблизительно одну молекулу на каждую молекулу фосфолипида. Помимо регулирования текучести холестерол увеличивает механическую прочность бислоя. Молекулы холестерола ориентируются в бислое таким образом, чтобы их гидроксильные группы примыкали к полярным головам фосфолипидных молекул

3) гликолипиды

Гликолипиды - это липидные молекулы, принадлежащие к классу олигосахаридсодержащих липидов, которые обнаруживаются только в наружной половине бислоя, а их сахарные группы ориентированы к поверхности клетки.

Гликолипиды это сфинголипиды, у которых к NH группе сфингазина присоединен остаток ЖК, а к кислороду сфингазина присоединены следующие группы: олигосахаридные цепи, Gal, Glc, GalNAc (нейраминовая кислота) – ганглиозиды. Gal или Glc – цереброзиды. сульфосахара Glc-SO3H, Gal-SO3H – сульфолипиды.

Гликолипиды обнаруживаются на поверхности всех плазматических мембран, однако их функция неизвестна. Гликолипиды составляют 5% липидных молекул наружного монослоя и сильно различаются у разных видов и даже в разных тканях одного вида. В животных клетках они синтезируются из сфингозина - длинного аминоспирта - и называются гликосфинголипидами.

Структура их в целом аналогична структуре фосфолипидов, образованных из глицерола. Все гликолипидные молекулы различаются по числу сахарных остатков в их полярных головах. Один из простейших гликолипидов – галактоцереброзид