Однородные ДУ. Уравнения сводящиеся к однородным

Рассмотрим уравнение вида

Если
, то уравнение (5.1) с помощью подстановки
, гдеи– новые переменные, а
и– некоторые постоянные числа, определяемые из системы

,

приводится к однородному уравнению
.

Если
, то уравнение (5.1) принимает вид:

.

Сделав замену
, получим уравнение, не содержащее независимую переменную.

Пример 1. Проинтегрировать уравнение

и выделить интегральную кривую, проходящую через точки:

а) (2; 2); б)
.

Решение. Положим
. Тогда

Сокращая на и собирая члены приdx и dz , получим

Разделим переменные:

.

Интегрируя, получим

, где
.

Заменяя z на , получим общий интеграл исходного уравнения в виде

или, что то же самое,

. (5.2)

Равенство (5.2) определяет семейство окружностей

.

Центры указанных окружностей лежат на прямой
и в начале координат касаются прямой
. Функция
, в свою очередь, является частным решением уравнения заданного дифференциального уравнения.

Определим, какие из найденных окружностей, удовлетворяют начальным условиям, то есть решим задачи Коши:

а) полагая в общем интеграле
,
, находим
, поэтому искомой кривой является окружность
;

б) ни одна из окружностей (5.2) не проходит через точку
. Зато полупрямая

проходит через указанную точку, а, значит,соответствующая функция
и даёт искомое решение.

Пример 2. Решить уравнение: .

Решение . Исходное уравнение является частным случаем уравнения (5.1).

Определитель
в данном случае не равен нулю, поэтому сначала рассмотрим систему
.

Решая указанную систему, получим, что
. Выполняя в заданном уравнении замену
, приходим к однородному уравнению

Интегрируя последнее уравнение после подстановки
, находим
. Возвращаясь к старым переменнымx и y по формулам
, имеем.

1.6. Обобщенное однородное уравнение

Определение. Уравнение называетсяобобщённым однородным , если удаётся подобрать такое число k , что левая часть этого уравнения становится однородной функцией некоторой степени m относительно x , y , dx и dy при условии, что x считается величиной первого измерения, y k - го измерения, dx – нулевого измерения и dy – (
)-го измерения.

Например, таковым будет уравнение

. (6.1)

Действительно, при сделанном предположении относительно измерений x , y , dx и dy члены левой части
иdy будут иметь соответственно измерения (–2), (2k ) и (k –1). Приравнивая эти величины, получаем условие, которому должно удовлетворять искомое число k :

.

Это условие выполняется при
(при такомk все члены левой части рассматриваемого уравнения будут иметь измерение (–2)). Следовательно, уравнение (6.1) является обобщённым однородным.

Обобщенное однородное уравнение приводится к уравнению с разделяющимися переменными с помощью подстановки
, гдеz – новая неизвестная функция. Проинтегрируем уравнение (6.1) описанным методом. Так как
, то
, а следовательно уравнение (6.1) примет вид:

Решая полученное уравнение путем разделения переменных, находим
, откуда
. Последнее равенство определяет общее решение уравнения (6.1).

1.7. Линейные дифференциальные уравнения 1-го порядка

Определение . Линейным уравнением 1-го порядка называется уравнение, линейное относительно искомой функции и её производной. Оно имеет вид:

, (7.1)

где
и
– заданные непрерывные функции от x . Если функция
, то уравнение (7.1) имеет вид:

(7.2)

и называется линейным однородным уравнением , в противном случае (
≢0) оно называется линейным неоднородным уравнением .

Линейное однородное дифференциальное уравнение (7.2) является уравнением с разделяющимися переменными:

;

;

(7.3)

Выражение (7.3) определяет общее решение уравнения (7.2). Чтобы найти общее решение уравнения (7.1), в котором функция
обозначает ту же функцию, что и в уравнении (7.2), воспользуемся так называемымметодом вариации произвольной постоянной , который состоит в следующем: постараемся подобрать функцию
так, чтобы общее решение линейного однородного уравнения (7.2) являлось решением неоднородного линейного уравнения (7.1). Тогда производная функции (7.3) примет вид:

Подставляя найденную производную в уравнение (7.1), получим:

.

Отсюда
, где– произвольная постоянная. В результате общее решение неоднородного линейного уравнения (7.1) будет иметь вид:

. (7.4)

Заметим, что первое слагаемое в выражении (7.4) представляет общее решение (7.3) линейного однородного дифференциального уравнения (7.2), а второе слагаемое – частное решение линейного неоднородного уравнения (7.1), полученное из общего (7.4) при
. Сформулируем замеченный факт в виде теоремы.

Теорема . Если известно одно частное решение линейного неоднородного дифференциального уравнения
, то все остальные решения имеют вид
, где
– общее решение соответствующего линейного однородного дифференциального уравнения.

Однако надо отметить, что для решения линейного неоднородного дифференциального уравнения 1-го порядка (7.1) чаще применяется другой метод, иногда называемый методом Бернулли . Будем искать решение уравнения (7.1) в виде
. Тогда
. Подставим найденную производную в исходное уравнение (7.1), получим:

.

Объединим, например, второе и третье слагаемые последнего выражения и вынесем функцию u (x ) как общий множитель за скобку:

. (7.5)

Потребуем обращения в нуль круглой скобки:
. Решим это уравнение, полагая произвольную постояннуюC равной нулю:

,
.

Найденную функцию v (x ) подставим в уравнение (7.5), откуда получим:

.

Решая его, приходим к:
.

Следовательно, общее решение уравнения (7.1) имеет вид.

Если уравнение удается преобразовать к виду , то это уравнение называется однородным. Нетрудно показать, что уравнение в дифференциальной форме M (x , y ) dx + N (x , y ) dy = 0 является однородным тогда и только тогда, когда функции M (x , y ) и N (x , y ) однородные функции одной и той же степени. Напомним, что функция F(x 1 ,x 2 ,..,x n) называется однородной степени k, если для неё выполнено соотношение F(tx 1 ,tx 2 ,..,tx n)=t k F(x 1 ,x 2 ,..,x n).

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными заменой y = xu, или, что тоже самое, , где u новая искомая функция. Действительно, тогда y" = u + u"x и исходное уравнение может быть переписано в виде u + u"x = f (u ), или u"x = f (u )u . Из последнего при f (u )u можем записать .

Пример . Решить уравнение (y 2 - 2xy)dx + x 2 dy = 0. Это однородное уравнение, так как y 2 - 2xy и x 2 однородные функции второй степени. Делаем замену y = xu, dy = udx + xdu. Подставляя в уравнение, имеем

(x 2 u 2 - 2x 2 u)dx + x 2 (udx + xdu) = 0.

Раскрывая скобки, приводя подобные и сокращая на x 2 , получаем уравнение с разделяющимися переменными

(u 2 - u)dx + xdu = 0

Разделяя переменные, получаем или, что то же самое, Интегрируя последнее соотношение, имеем lnu - ln(u-1) = lnx + lnC. Потенцируя (переходя от логарифмической функции к e x), можем записать или, делая обратную замену , получаем общий интеграл уравнения

Уравнения вида приводятся к однородным переносом начала координат в точку пересечения прямых a 1 x + b 1 y +c 1 = 0, a 2 x + b 2 y +c 2 = 0, если определитель отличен от нуля, и заменой a 1 x + b 1 y = z, если этот определитель равен нулю.

Решить однородные уравнения онлайн можно с помощью специального сервиса

Стоп! Давай всетаки попытаемся разобраться в этой громоздкой формуле.

На первом месте должна идти первая переменная в степени с некоторым коэффициентом. В нашем случае это

В нашем случае это. Как мы выяснили, значит здесь степень при первой переменной - сходится. И вторая переменная в первой степени - на месте. Коэффициент.

У нас это.

Первая переменная в степени, и вторая переменная в квадрате, с коэффициентом. Это последний член уравнения.

Как видишь, наше уравнение подходит под определение в виде формулы.

Давай рассмотрим вторую (словесную) часть определения.

У нас две неизвестные и. Здесь сходится.

Рассмотрим все слагаемые. В них сумма степеней неизвестных должна быть одинакова.

Сумма степеней равна.

Сумма степеней равна (при и при).

Сумма степеней равна.

Как видишь, все сходится!!!

Теперь давай потренируемся в определении однородных уравнений.

Определи, какие из уравнений - однородные:

Однородные уравнения - уравнения под номерами:

Рассмотрим отдельно уравнение.

Если мы разделим каждое слагаемое на разложим каждое слагаемое, то получим

А это уравнение полностью попадает под определение однородных уравнений.

Как решать однородные уравнения?

Пример 2.

Разделим уравнение на.

У нас по условию y не может быть равен. Поэтому мы можем смело делить на

Произведя замену, мы получим простое квадратное уравнение:

Так как это приведенное квадратное уравнение, воспользуемся теоремой Виета:

Произведя обратную замену, получаем ответ

Ответ:

Пример 3.

Разделим уравнение на (по условию).

Ответ:

Пример 4.

Найдите, если.

Здесь нужно не делить, а умножать. Умножим все уравнение на:

Произведем замену и решим квадратное уравнение:

Произведя обратную замену, получим ответ:

Ответ:

Решение однородных тригонометрических уравнений.

Решение однородных тригонометрических уравнений ничем не отличается от способов решения, описанных выше. Только здесь, помимо прочего, нужно немного знать тригонометрию. И уметь решать тригонометрические уравнения (для этого можешь прочитать раздел ).

Рассмотрим такие уравнения на примерах.

Пример 5.

Решите уравнение.

Мы видим типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Подобные однородные уравнения решаются не сложно, но перед тем, как разделить уравнения на, рассмотрим случай, когда

В этом случае уравнение примет вид: , значит. Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому, и на него можно смело делить:

Так как уравнение приведенное, то по теореме Виета:

Ответ:

Пример 6.

Решите уравнение.

Как и в примере, нужно разделить уравнение на. Рассмотрим случай, когда:

Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому.

Сделаем замену и решим квадратное уравнение:

Сделаем обратную замену и найдем и:

Ответ:

Решение однородных показательных уравнений.

Однородные уравнения решаются так же, как рассмотренных выше. Если ты забыл, как решать показательные уравнения - посмотри соответствующий раздел ()!

Рассмотрим несколько примеров.

Пример 7.

Решите уравнение

Представим как:

Мы видим типичное однородное уравнение, с двумя переменными и суммой степеней. Разделим уравнение на:

Как можно заметить, произведя замену, мы получим приведенное квадратное уравнение (при этом не нужно опасаться деления на ноль - всегда строго больше нуля):

По теореме Виета:

Ответ: .

Пример 8.

Решите уравнение

Представим как:

Разделим уравнение на:

Произведем замену и решим квадратное уравнение:

Корень не удовлетворяет условию. Произведем обратную замену и найдем:

Ответ:

ОДНОРОДНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Сначала на примере одной задачки напомню что такое однородные уравнения и что из себя представляет решение однородных уравнений.

Решите задачу:

Найдите, если.

Здесь можно заметить любопытную вещь: если поделить каждое слагаемое на, получим:

То есть, теперь нет отдельных и, - теперь переменной в уравнении является искомая величина. И это обычное квадратное уравнение, которое легко решить с помощью теоремы Виета: произведение корней равно, а сумма - это числа и.

Ответ:

Уравнения вида

называется однородным. То есть, это уравнение с двумя неизвестными, в каждом слагаемом которого одинаковая сумма степеней этих неизвестных. Например, в примере выше эта сумма равна. Решение однородных уравнений осуществляется делением на одну из неизвестных в этой степени:

И последующей заменой переменных: . Таким образом получаем уравнение степени с одной неизвестной:

Чаще всего нам будут встречаться уравнения второй степени (то есть квадратные), а их решать мы умеем:

Отметим, что делить (и умножать) все уравнение на переменную можно только если мы убеждены, что эта переменная не может быть равна нулю! Например, если нас просят найти, сразу понимаем, что, поскольку на делить нельзя. В случаях, когда это не так очевидно, необходимо отдельно проверять случай когда эта переменная равна нулю. Например:

Решите уравнение.

Решение:

Видим здесь типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Но, прежде чем разделить на и получить квадратное уравнение относительно, мы должны рассмотреть случай, когда. В этом случае уравнение примет вид: , значит, . Но синус и косинус не могут быть одновременно равны нулю, ведь по основному тригонометрическому тождеству: . Поэтому, и на него можно смело делить:

Надеюсь, это решение полностью понятно? Если нет, прочитай раздел . Если же непонятно, откуда взялось, тебе нужно вернуться еще раньше - к разделу .

Реши сам:

  1. Найдите, если.
  2. Найдите, если.
  3. Решите уравнение.

Здесь я кратко напишу непосредственно решение однородных уравнений:

Решения:

    Ответ: .

    А здесь надо не делить, а умножать:

    Ответ:

    Если ты еще не проходил, этот пример можно пропустить.

    Так как здесь нам нужно делить на, убедимся сперва, сто он не равен нулю:

    А это невозможно.

    Ответ: .

ОДНОРОДНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени и дальнейшей заменой переменных.

Алгоритм:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Функция f(x, y) называется однородной функцией n-го измерения относительно переменных х и у, если при любом справедливо тождество

Дифференциальное уравнение первого порядка называется однородным относительно х и у , если функция есть однородная функция нулевого измерения относительно х и у.

Решение однородного дифференциального уравнения.

Так как по условию . Положим , получим , т.е. однородная функция нулевого измерения зависит только от отношения аргументов. А само уравнение в этом случае примет вид .

Сделаем подстановку ; т.е. , тогда , подставим в исходное уравнение - это дифференциальное уравнение с разделяющимися переменными

Уравнение вида
(1)
можно свести к однородному типу.
Общий вид преобразований.
Для того, чтобы привести уравнение (1) к однородному типу дифференциальных уравнений надо составить систему вида:

Первый случай.
Эта система имеет решение.
Пусть решение этой системы:
.
Тогда, для приведения уравнения (1) к однородному типу необходимо сделать подстановку вида

Второй случай.
Напомним. Уравнение

Приводим к однородному типу, составили систему
,
а решений эта система не имеет.
В этом случае следует сделать замену .

6. Неоднородные линейные дифференциальные уравнения первого порядка. Решение неоднородного линейного дифференциального уравнения первого порядка методом Бернулли. Уравнения Бернулли .

Неоднородное дифференциальное уравнение - дифференциальное уравнение (обыкновенное или в частных производных), которое содержит тождественно не равный нулю свободный член - слагаемое, не зависящее от неизвестных функций.

Линейное уравнение первого порядка в стандартной записи имеет вид

Обыкновенное дифференциальное уравнение вида:

называется уравнением Бернулли (при или получаем неоднородное или однородное линейное уравнение).

Подберем так, чтобы было

для этого достаточно решить уравнение с разделяющимися переменными 1-го порядка. После этого для определения получаем уравнение - уравнение с разделяющимися переменными.

7. Однородные и неоднородные линейные дифференциальные уравнения первого порядка методом вариации произвольной постоянной .

Дифференциальное уравнение является однородным, если оно не содержит свободного члена - слагаемого, не зависящего от неизвестной функции. Так, можно говорить, что уравнение - однородно, если .

В случае, если , говорят о неоднородном дифференциальном уравнении

Уравнение вида

называется линейным неоднородным уравнением.
Уравнение вида

называется линейным однородным уравнением.